ﻻ يوجد ملخص باللغة العربية
We make black hole (BH) merger trees from Millennium and Millennium-II simulations to find under what conditions 10^9Msun SMBH can form by redshift z=7. In order to exploit both: large box size in the Millennium simulation; and large mass resolution in the Millennium-II simulation, we develop a method to combine these two simulations together, and use the Millennium-II merger trees to predict the BH seeds to be used in the Millennium merger trees. We run multiple semi-analytical simulations where SMBHs grow through mergers and episodes of gas accretion triggered by major mergers. As a constraint, we use observed BH mass function at redshift z=6. We find that in the light of the recent observations of moderate super-Eddington accretion, low-mass seeds (100Msun) could be the progenitors of high-redshift SMBHs (z~7), as long as the accretion during the accretion episodes is moderately super-Eddington, where f_Edd=3.7 is the effective Eddington ratio averaged over 50 Myr.
We detected 10 compact galaxy groups (CGs) at $z=0$ in the semi-analytic galaxy catalog of Guo et al. (2011) for the milli-Millennium Cosmological Simulation (sCGs in mGuo2010a). We aimed to identify potential canonical pathways for compact group evo
We have exploited the large-volume Millennium Gas cosmological N-body hydrodynamics simulations to study the SZ cluster population at low and high redshift, for three models with varying gas physics. We confirm previous results using smaller samples
Simulations of large-scale structure in the universe have played a vital role in observational cosmology since 1980s in particular. Their important role will definitely continue to be true in the 21st century. Rather the requirements for simulations
Certain configurations of massive structures projected along the line of sight maximize the number of detections of gravitationally lensed $zsim10$ galaxies. We characterize such lines of sight with the etendue $sigma_mu$, the area in the source plan
The joint likelihood of observable cluster signals reflects the astrophysical evolution of the coupled baryonic and dark matter components in massive halos, and its knowledge will enhance cosmological parameter constraints in the coming era of large,