ﻻ يوجد ملخص باللغة العربية
We examine the adsorption of a single Ni atom on a monolayer of MgO on a Ag substrate using DFT and DFT+U computational approaches. We find that the electronic and magnetic properties vary considerably across the three binding sites of the surface. Two of the binding sites are competitive in energy, and the preferred site depends on the strength of the on-site Coulomb interaction U. These results can be understood in terms of the competition between bonding and magnetism for surface adsorbed transition metal atoms. Comparisons are made with a recent experimental and theoretical study of Co on MgO/Ag, and implications for scanning tunneling microscopy experiments on the Ni system are discussed.
Graphene is one of the most important materials in science today due to its unique and remarkable electronic, thermal and mechanical properties. However in its pristine state, graphene is a gapless semiconductor, what limits its use in transistor ele
The morphology of growing Pd nano-particles on MgO(001) surfaces have been investigated in situ, during growth, by grazing incidence small angle x-ray scattering, for different substrate temperatures. The 2D patterns obtained are quantitatively analy
In the framework of real-time time-dependent density functional theory (RT-TDDFT) we unravel the layer-resolved dynamics of the electronic structure of a (Fe)$_1$/(MgO)$_3$(001) multilayer system after an optical excitation with a frequency below the
Crystalline Fe3O4/NiO bilayers were grown on MgO(001) substrates using reactive molecular beam epitaxy to investigate their structural properties and their morphology. The film thickness either of the Fe3O4 film or of the NiO film has been varied to
The phase immiscibility and the excellent matching between Ag(001) and Fe(001) unit cells (mismatch 0.8 %) make Fe/Ag growth attractive in the field of low dimensionality magnetic systems. Intermixing could be drastically limited at deposition temper