ﻻ يوجد ملخص باللغة العربية
Many inflation models predict that primordial density perturbations have a nonzero three-point correlation function, or bispectrum in Fourier space. Of the several possibilities for this bispectrum, the most commmon is the local-model bispectrum, which can be described as a spatial modulation of the small-scale (large-wavenumber) power spectrum by long-wavelength density fluctuations. While the local model predicts this spatial modulation to be scale-independent, many variants have some scale-dependence. Here we note that this scale dependence can be probed with measurements of frequency-spectrum distortions in the cosmic microwave background (CMB), in particular highlighting Compton-$y$ distortions. Dissipation of primordial perturbations with wavenumbers $50,{rm Mpc}^{-1} lesssim k lesssim 10^4,{rm Mpc}^{-1}$ give rise to chemical-potential ($mu$) distortions, while those with wavenumbers $1,{rm Mpc}^{-1} lesssim k lesssim 50,{rm Mpc}^{-1}$ give rise to Compton-$y$ distortions. With local-model non-Gaussianity, the distortions induced by this dissipation can be distinguished from those due to other sources via their cross-correlation with the CMB temperature $T$. We show that the relative strengths of the $mu T$ and $yT$ correlations thus probe the scale-dependence of non-Gaussianity and estimate the magnitude of possible signals relative to sensitivities of future experiments. We discuss the complementarity of these measurements with other probes of squeezed-limit non-Gaussianity.
We compute the spectral distortions of the Cosmic Microwave Background (CMB) polarization induced by non-linear effects in the Compton interactions between CMB photons and cold intergalactic electrons. This signal is of the $y$-type and is dominated
Voyage 2050 White Paper highlighting the unique science opportunities using spectral distortions of the cosmic microwave background (CMB). CMB spectral distortions probe many processes throughout the history of the Universe. Precision spectroscopy, p
Since the measurements of COBE/FIRAS in the mid-90s we know that the energy spectrum of the cosmic microwave background (CMB) is extremely close to that of a perfect blackbody at an average temperature T0~2.726K. However, a number of early-universe p
We analyze WMAP 3 year data using the one-point distribution functions to probe the non-Gaussianity in the Cosmic Microwave Background (CMB) Anisotropy data. Computer simulations are performed to determine the uncertainties of the results. We report
We derive a fast way for measuring primordial non-Gaussianity in a nearly full-sky map of the cosmic microwave background. We find a cubic combination of sky maps combining bispectrum configurations to capture a quadratic term in primordial fluctuati