ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonnegative Multi-level Network Factorization for Latent Factor Analysis

224   0   0.0 ( 0 )
 نشر من قبل Junyu Xuan
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Nonnegative Matrix Factorization (NMF) aims to factorize a matrix into two optimized nonnegative matrices and has been widely used for unsupervised learning tasks such as product recommendation based on a rating matrix. However, although networks between nodes with the same nature exist, standard NMF overlooks them, e.g., the social network between users. This problem leads to comparatively low recommendation accuracy because these networks are also reflections of the nature of the nodes, such as the preferences of users in a social network. Also, social networks, as complex networks, have many different structures. Each structure is a composition of links between nodes and reflects the nature of nodes, so retaining the different network structures will lead to differences in recommendation performance. To investigate the impact of these network structures on the factorization, this paper proposes four multi-level network factorization algorithms based on the standard NMF, which integrates the vertical network (e.g., rating matrix) with the structures of horizontal network (e.g., user social network). These algorithms are carefully designed with corresponding convergence proofs to retain four desired network structures. Experiments on synthetic data show that the proposed algorithms are able to preserve the desired network structures as designed. Experiments on real-world data show that considering the horizontal networks improves the accuracy of document clustering and recommendation with standard NMF, and various structures show their differences in performance on these two tasks. These results can be directly used in document clustering and recommendation systems.



قيم البحث

اقرأ أيضاً

In this paper, we present several descent methods that can be applied to nonnegative matrix factorization and we analyze a recently developped fast block coordinate method called Rank-one Residue Iteration (RRI). We also give a comparison of these di fferent methods and show that the new block coordinate method has better properties in terms of approximation error and complexity. By interpreting this method as a rank-one approximation of the residue matrix, we prove that it emph{converges} and also extend it to the nonnegative tensor factorization and introduce some variants of the method by imposing some additional controllable constraints such as: sparsity, discreteness and smoothness.
145 - Stephen A. Vavasis 2007
Nonnegative matrix factorization (NMF) has become a prominent technique for the analysis of image databases, text databases and other information retrieval and clustering applications. In this report, we define an exact version of NMF. Then we establ ish several results about exact NMF: (1) that it is equivalent to a problem in polyhedral combinatorics; (2) that it is NP-hard; and (3) that a polynomial-time local search heuristic exists.
173 - Chao Yan , Hui-Min Cheng , Xin Liu 2018
Community structures detection in signed network is very important for understanding not only the topology structures of signed networks, but also the functions of them, such as information diffusion, epidemic spreading, etc. In this paper, we develo p a joint nonnegative matrix factorization model to detect community structures. In addition, we propose modified partition density to evaluate the quality of community structures. We use it to determine the appropriate number of communities. The effectiveness of our approach is demonstrated based on both synthetic and real-world networks.
95 - Xavier Bost 2016
Modern popular TV series often develop complex storylines spanning several seasons, but are usually watched in quite a discontinuous way. As a result, the viewer generally needs a comprehensive summary of the previous season plot before the new one s tarts. The generation of such summaries requires first to identify and characterize the dynamics of the series subplots. One way of doing so is to study the underlying social network of interactions between the characters involved in the narrative. The standard tools used in the Social Networks Analysis field to extract such a network rely on an integration of time, either over the whole considered period, or as a sequence of several time-slices. However, they turn out to be inappropriate in the case of TV series, due to the fact the scenes showed onscreen alternatively focus on parallel storylines, and do not necessarily respect a traditional chronology. This makes existing extraction methods inefficient to describe the dynamics of relationships between characters, or to get a relevant instantaneous view of the current social state in the plot. This is especially true for characters shown as interacting with each other at some previous point in the plot but temporarily neglected by the narrative. In this article, we introduce narrative smoothing, a novel, still exploratory, network extraction method. It smooths the relationship dynamics based on the plot properties, aiming at solving some of the limitations present in the standard approaches. In order to assess our method, we apply it to a new corpus of 3 popular TV series, and compare it to both standard approaches. Our results are promising, showing narrative smoothing leads to more relevant observations when it comes to the characterization of the protagonists and their relationships. It could be used as a basis for further modeling the intertwined storylines constituting TV series plots.
Increased data gathering capacity, together with the spread of data analytics techniques, has prompted an unprecedented concentration of information related to the individuals preferences in the hands of a few gatekeepers. In the present paper, we sh ow how platforms performances still appear astonishing in relation to some unexplored data and networks properties, capable to enhance the platforms capacity to implement steering practices by means of an increased ability to estimate individuals preferences. To this end, we rely on network science whose analytical tools allow data representations capable of highlighting relationships between subjects and/or items, extracting a great amount of information. We therefore propose a measure called Network Information Patrimony, considering the amount of information available within the system and we look into how platforms could exploit data stemming from connected profiles within a network, with a view to obtaining competitive advantages. Our measure takes into account the quality of the connections among nodes as the one of a hypothetical user in relation to its neighbourhood, detecting how users with a good neighbourhood -- hence of a superior connections set -- obtain better information. We tested our measures on Amazons instances, obtaining evidence which confirm the relevance of information extracted from nodes neighbourhood in order to steer targeted users.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا