ﻻ يوجد ملخص باللغة العربية
Modern electronic devices heavily rely on the accurate control of charge and spin of electrons. The emergence of controllable valley degree of freedom brings new possibilities and presents a promising prospect towards valleytronics. Recently, valley excitation selected by chiral optical pumping has been observed in monolayer MoS2. In this work, we report polarized photoluminescence (PL) measurements for monolayer MoSe2, another member of the family of transition-metal-dichalcogenides (MX2), and observe drastic difference from the outcomes of MoS2. In particular, we identify a valley polarization (VP) up to 70% for B exciton, while that for A exciton is less than 3%. Besides, we also find a small but finite negative VP for A- trion. These results reveal several new intra- and inter-valley scattering processes which significantly affect valley polarization, hence provide new insights into exciton physics in monolayer MX2 and possible valleytronic applications.
Single layers of transition metal dichalcogenides (TMDs) are direct gap semiconductors with nondegenerate valley indices. An intriguing possibility for these materials is the use of their valley index as an alternate state variable. Several limitatio
In monolayer semiconductor transition metal dichalcogenides, the exciton-phonon interaction is expected to strongly affect the photocarrier dynamics. Here, we report on an unusual oscillatory enhancement of the neutral exciton photoluminescence with
We have measured circularly polarized photoluminescence in monolayer MoSe2 under perpendicular magnetic fields up to 10 T. At low doping densities, the neutral and charged excitons shift linearly with field strength at a rate of $mp$ 0.12 meV/T for e
Valleytronics is rapidly emerging as an exciting area of basic and applied research. In two dimensional systems, valley polarisation can dramatically modify physical properties through electron-electron interactions as demonstrated by such phenomena
Valleytronics targets the exploitation of the additional degrees of freedom in materials where the energy of the carriers may assume several equal minimum values (valleys) at non-equivalent points of the reciprocal space. In single layers of transiti