ﻻ يوجد ملخص باللغة العربية
A complete description of traces on $mathbb{R}^{n}$ of functions from the weighted Sobolev space $W^{l}_{1}(mathbb{R}^{n+1},gamma)$, $l in mathbb{N}$, with weight $gamma in A^{rm loc}_{1}(mathbb{R}^{n+1})$ is obtained. In the case $l=1$ the proof of the trace theorems is based on a~special nonlinear algorithm for constructing a~system of tilings of the space~$mathbb R^n$. As the trace of the space $W^1_1(mathbb R^{n+1},gamma)$ we have the new function space $Z({gamma_{k,m}})$.
Let $S subset mathbb{R}^{n}$ be an arbitrary nonempty compact set such that the $d$-Hausdorff content $mathcal{H}^{d}_{infty}(S) > 0$ for some $d in (0,n]$. For each $p in (max{1,n-d},n]$ an almost sharp intrinsic description of the trace space $W_{p
We characterize the trace of magnetic Sobolev spaces defined in a half-space or in a smooth bounded domain in which the magnetic field $A$ is differentiable and its exterior derivative corresponding to the magnetic field $dA$ is bounded. In particula
We construct explicit examples of Frostman-type measures concentrated on arbitrary planar rectifiable curves of positive length. Based on such constructions we obtain for each $p in (1,infty)$ an exact description of the trace space of the first-orde
Let $S subset mathbb{R}^{n}$ be a~closed set such that for some $d in [0,n]$ and $varepsilon > 0$ the~$d$-Hausdorff content $mathcal{H}^{d}_{infty}(S cap Q(x,r)) geq varepsilon r^{d}$ for all cubes~$Q(x,r)$ centered in~$x in S$ with side length $2r i
We investigate an infinite, linear system of ordinary differential equations that models the evolution of fragmenting clusters. We assume that each cluster is composed of identical units (monomers) and we allow mass to be lost, gained or conserved du