ﻻ يوجد ملخص باللغة العربية
We make a critical comparison between ultra-high energy particle collisions around an extremal Kerr black hole and that around an over-spinning Kerr singularity, mainly focusing on the issue of the timescale of collisions. We show that the time required for two massive particles with the proton mass or two massless particles of GeV energies to collide around the Kerr black hole with Planck energy is several orders of magnitude longer than the age of the Universe for astro-physically relevant masses of black holes, whereas time required in the over-spinning case is of the order of ten million years which is much shorter than the age of the Universe. Thus from the point of view of observation of Planck scale collisions, the over-spinning Kerr geometry, subject to their occurrence, has distinct advantage over their black hole counterparts.
In this paper, we discuss about the possibility to enhance the tensor-to-scalar ratio $r$ under the condition of Trans-Planckian censorship conjecture (TCC), thus $rsim O(10^{-3})$ could be observable within the sensitivity of future experiments. We
We investigate the implication of Trans-Planckian Censorship Conjecture (TCC) for the initial state of primordial perturbations. It is possible to set the state of perturbation modes in the infinite past as the Minkowski vacuum, only if the pre-infla
We explore the bound of the trans-Planckian censorship conjecture on an inflation model with multiple stages. We show that if the first inflationary stage is responsible for the primordial perturbations in the cosmic microwave background window, the
We apply the analogy between gravitational fields and optical media in the general relativistic geometric optics framework to describe how light can acquire orbital angular momentum (OAM) when it traverses the gravitational field of a massive rotatin
In any conformally invariant gravitational theory, the space of exact solutions is greatly enlarged. The Weyls conformal invariance can then be spontaneously broken to spherically symmetric vacuum solutions that exclude the spacetime region inside th