ترغب بنشر مسار تعليمي؟ اضغط هنا

On calculations of the twisted Alexander ideals for spatial graphs, handlebody-knots and surface-links

201   0   0.0 ( 0 )
 نشر من قبل Ryo Nikkuni
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

There are many studies about twisted Alexander invariants for knots and links, but calculations of twisted Alexander invariants for spatial graphs, handlebody-knots, and surface-links have not been demonstrated well. In this paper, we give some remarks to calculate the twisted Alexander ideals for spatial graphs, handlebody-knots and surface-links, and observe their behaviors. For spatial graphs, we calculate the invariants of Suzukis theta-curves and show that the invariants are nontrivial for Suzukis theta-curves whose Alexander ideals are trivial. For handlebody-knots, we give a remark on abelianizations and calculate the invariant of the handlebody-knots up to six crossings. For surface-links, we correct Yoshikawas table and calculate the invariants of the surface-links in the table.



قيم البحث

اقرأ أيضاً

70 - Sam Nelson , Yuqi Zhao 2017
We generalize unoriented handlebody-links to the twisted virtual case, obtaining Reidemeister moves for handlebody-links in ambient spaces of the form $Sigmatimes [0,1]$ for $Sigma$ a compact closed 2-manifold up to stable equivalence. We introduce a related algebraic structure known as twisted virtual bikeigebras whose axioms are motivated by the twisted virtual handlebody-link Reidemeister moves. We use twisted virtual bikeigebras to define $X$-colorability for twisted virtual handlebody-links and define an integer-valued invariant $Phi_{X}^{mathbb{Z}}$ of twisted virtual handlebody-links. We provide example computations of the new invariants and use them to distinguish some twisted virtual handlebody-links.
In this paper we give an explicit formula for the twisted Alexander polynomial of any torus link and show that it is a locally constant function on the $SL(2, mathbb C)$-character variety. We also discuss similar things for the higher dimensional twi sted Alexander polynomial and the Reidemeister torsion.
In this paper we apply the twisted Alexander polynomial to study the fibering and genus detecting problems for oriented links. In particular we generalize a conjecture of Dunfield, Friedl and Jackson on the torsion polynomial of hyperbolic knots to h yperbolic links, and confirm it for an infinite family of hyperbolic 2-bridge links. Moreover we consider a similar problem for parabolic representations of 2-bridge link groups.
In this paper we show that the twisted Alexander polynomial associated to a parabolic representation determines fiberedness and genus of a wide class of 2-bridge knots. As a corollary we give an affirmative answer to a conjecture of Dunfield, Friedl and Jackson for infinitely many hyperbolic knots.
A {em balanced} spatial graph has an integer weight on each edge, so that the directed sum of the weights at each vertex is zero. We describe the Alexander module and polynomial for balanced spatial graphs (originally due to Kinoshita cite{ki}), and examine their behavior under some common operations on the graph. We use the Alexander module to define the determinant and $p$-colorings of a balanced spatial graph, and provide examples. We show that the determinant of a spatial graph determines for which $p$ the graph is $p$-colorable, and that a $p$-coloring of a graph corresponds to a representation of the fundamental group of its complement into a metacyclic group $Gamma(p,m,k)$. We finish by proving some properties of the Alexander polynomial.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا