ﻻ يوجد ملخص باللغة العربية
There are many studies about twisted Alexander invariants for knots and links, but calculations of twisted Alexander invariants for spatial graphs, handlebody-knots, and surface-links have not been demonstrated well. In this paper, we give some remarks to calculate the twisted Alexander ideals for spatial graphs, handlebody-knots and surface-links, and observe their behaviors. For spatial graphs, we calculate the invariants of Suzukis theta-curves and show that the invariants are nontrivial for Suzukis theta-curves whose Alexander ideals are trivial. For handlebody-knots, we give a remark on abelianizations and calculate the invariant of the handlebody-knots up to six crossings. For surface-links, we correct Yoshikawas table and calculate the invariants of the surface-links in the table.
We generalize unoriented handlebody-links to the twisted virtual case, obtaining Reidemeister moves for handlebody-links in ambient spaces of the form $Sigmatimes [0,1]$ for $Sigma$ a compact closed 2-manifold up to stable equivalence. We introduce a
In this paper we give an explicit formula for the twisted Alexander polynomial of any torus link and show that it is a locally constant function on the $SL(2, mathbb C)$-character variety. We also discuss similar things for the higher dimensional twi
In this paper we apply the twisted Alexander polynomial to study the fibering and genus detecting problems for oriented links. In particular we generalize a conjecture of Dunfield, Friedl and Jackson on the torsion polynomial of hyperbolic knots to h
In this paper we show that the twisted Alexander polynomial associated to a parabolic representation determines fiberedness and genus of a wide class of 2-bridge knots. As a corollary we give an affirmative answer to a conjecture of Dunfield, Friedl and Jackson for infinitely many hyperbolic knots.
A {em balanced} spatial graph has an integer weight on each edge, so that the directed sum of the weights at each vertex is zero. We describe the Alexander module and polynomial for balanced spatial graphs (originally due to Kinoshita cite{ki}), and