ترغب بنشر مسار تعليمي؟ اضغط هنا

Implementing the De-thinning Method for High Energy Cosmic Rays Extensive Air Shower Simulations

144   0   0.0 ( 0 )
 نشر من قبل Hernan Asorey
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To simulate the interaction of cosmic rays with the Earth atmosphere requires highly complex computational resources and several statistical techniques have been developed to simplify those calculations. It is common to implement the thinning algorithms to reduce the number of secondary particles by assigning weights to representative particles in the evolution of the cascade. However, since this is a compression method with information loss, it is required to recover the original flux of secondary particles without introduce artificial biases. In this work we present the preliminary results of our version of the de-thinning algorithm for the reconstruction of thinned simulations of extensive air showers initiated by cosmic rays and photons in the energy range $10^{15} < E/mathrm{eV} < 10^{17}$.



قيم البحث

اقرأ أيضاً

Despite large progresses in building new detectors and in the analysis techniques, the key questions concerning the origin, acceleration and propagation of Galactic Cosmic Rays are still open. A number of new EAS arrays is in progress. The most ambit ious and sensitive project between them is LHAASO, a new generation multi-component experiment to be installed at very high altitude in China (Daocheng, Sichuan province, 4400 m a.s.l.). The experiment will face the open problems through a combined study of photon- and charged particle-induced extensive air showers in the wide energy range 10$^{11}$ - 10$^{18}$ eV. In this paper the status of the experiment will be summarized, the science program presented and the outlook discussed in comparison with leading new projects.
An accurate knowledge of the fluorescence yield and its dependence on atmospheric properties such as pressure, temperature or humidity is essential to obtain a reliable measurement of the primary energy of cosmic rays in experiments using the fluores cence technique. In this work, several sets of fluorescence yield data (i.e. absolute value and quenching parameters) are described and compared. A simple procedure to study the effect of the assumed fluorescence yield on the reconstructed shower parameters (energy and shower maximum depth) as a function of the primary features has been developed. As an application, the effect of water vapor and temperature dependence of the collisional cross section on the fluorescence yield and its impact on the reconstruction of primary energy and shower maximum depth has been studied.
468 - A.V. Glushkov 2012
Several energy spectra of cosmic rays with energies E_0 geq 10^17 eV measured at the Yakutsk EAS, AGASA, Haverah Park, HiRes, Auger, and SUGAR arrays are considered. It is shown that the fairly good mutual agreement of the spectrum shapes can be achi eved if the energy of each spectrum is multiplied by a factor K specific for each spectrum. These factors exhibit a pronounced dependence on the latitude of the above-mentioned arrays.
The Galactic magnetic field, locally observed to be on the order of a few $mu$G, is sufficiently strong to induce deflections in the arrival directions of ultra-high energy cosmic rays. We present a method that establishes measures of self-consistenc y for hypothesis sets comprised of cosmic magnetic field models and ultra-high energy cosmic ray composition and source distributions. The method uses two independent procedures to compare the backtracked velocity vectors outside the magnetic field model to the distribution of backtracked velocity directions of many isotropic observations with the same primary energies. This allows for an estimate of the statistical consistency between the observed data and simulated isotropic observations. Inconsistency with the isotropic expectation of source correlation in both procedures is interpreted as the hypothesis set providing a self-consistent description of GMF and UHECR properties for the cosmic ray observations.
The Tunka Radio Extension (Tunka-Rex) is an array of 63 antennas located in the Tunka Valley, Siberia. It detects radio pulses in the 30-80 MHz band produced during the air-shower development. As shown by Tunka-Rex, a sparse radio array with about 20 0 m spacing is able to reconstruct the energy and the depth of the shower maximum with satisfactory precision using simple methods based on parameters of the lateral distribution of amplitudes. The LOFAR experiment has shown that a sophisticated treatment of all individually measured amplitudes of a dense antenna array can make the precision comparable with the resolution of existing optical techniques. We develop these ideas further and present a method based on the treatment of time series of measured signals, i.e. each antenna station provides several points (trace) instead of a single one (amplitude or power). We use the measured shower axis and energy as input for CoREAS simulations: for each measured event we simulate a set of air-showers with proton, helium, nitrogen and iron as primary particle (each primary is simulated about ten times to cover fluctuations in the shower maximum due to the first interaction). Simulated radio pulses are processed with the Tunka-Rex detector response and convoluted with the measured signals. A likelihood fit determines how well the simulated event fits to the measured one. The positions of the shower maxima are defined from the distribution of chi-square values of these fits. When using this improved method instead of the standard one, firstly, the shower maximum of more events can be reconstructed, secondly, the resolution is increased. The performance of the method is demonstrated on the data acquired by the Tunka-Rex detector in 2012-2014.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا