ﻻ يوجد ملخص باللغة العربية
We study the large-$n$ limit of the probability $p_{2n,2k}$ that a random $2ntimes 2n$ matrix sampled from the real Ginibre ensemble has $2k$ real eigenvalues. We prove that, $$lim_{nrightarrow infty}frac {1}{sqrt{2n}} log p_{2n,2k}=lim_{nrightarrow infty}frac {1}{sqrt{2n}} log p_{2n,0}= -frac{1}{sqrt{2pi}}zetaleft(frac{3}{2}right),$$ where $zeta$ is the Riemann zeta-function. Moreover, for any sequence of non-negative integers $(k_n)_{ngeq 1}$, $$lim_{nrightarrow infty}frac {1}{sqrt{2n}} log p_{2n,2k_n}=-frac{1}{sqrt{2pi}}zetaleft(frac{3}{2}right),$$ provided $lim_{nrightarrow infty} left(n^{-1/2}log(n)right) k_{n}=0$.
We consider the quantity $P(G)$ associated with a graph $G$ that is defined as the probability that a randomly chosen subtree of $G$ is spanning. Motivated by conjectures due to Chin, Gordon, MacPhee and Vincent on the behaviour of this graph invaria
We consider the real eigenvalues of an $(N times N)$ real elliptic Ginibre matrix whose entries are correlated through a non-Hermiticity parameter $tau_Nin [0,1]$. In the almost-Hermitian regime where $1-tau_N=Theta(N^{-1})$, we obtain the large-$N$
We show that in the point process limit of the bulk eigenvalues of $beta$-ensembles of random matrices, the probability of having no eigenvalue in a fixed interval of size $lambda$ is given by [bigl( kappa_{beta}+o(1)bigr)lambda^{gamma_{beta}}expbigg
In this paper, we study random matrix models which are obtained as a non-commutative polynomial in random matrix variables of two kinds: (a) a first kind which have a discrete spectrum in the limit, (b) a second kind which have a joint limiting distr
This extends a theorem of Davenport and Erdos on sequences of rational integers to sequences of integral ideals in arbitrary number fields $K$. More precisely, we introduce a logarithmic density for sets of integral ideals in $K$ and provide a formul