ﻻ يوجد ملخص باللغة العربية
This document is an invited chapter covering the specificities of ABC model choice, intended for the incoming Handbook of ABC by Sisson, Fan, and Beaumont (2017). Beyond exposing the potential pitfalls of ABC based posterior probabilities, the review emphasizes mostly the solution proposed by Pudlo et al. (2016) on the use of random forests for aggregating summary statistics and and for estimating the posterior probability of the most likely model via a secondary random fores.
A maximum likelihood methodology for the parameters of models with an intractable likelihood is introduced. We produce a likelihood-free version of the stochastic approximation expectation-maximization (SAEM) algorithm to maximize the likelihood func
In Chib (1995), a method for approximating marginal densities in a Bayesian setting is proposed, with one proeminent application being the estimation of the number of components in a normal mixture. As pointed out in Neal (1999) and Fruhwirth-Schnatt
A maximum likelihood methodology for a general class of models is presented, using an approximate Bayesian computation (ABC) approach. The typical target of ABC methods are models with intractable likelihoods, and we combine an ABC-MCMC sampler with
Let X_1, ..., X_n be independent and identically distributed random vectors with a log-concave (Lebesgue) density f. We first prove that, with probability one, there exists a unique maximum likelihood estimator of f. The use of this estimator is attr
Nonlinear Mixed effects models are hidden variables models that are widely used in many field such as pharmacometrics. In such models, the distribution characteristics of hidden variables can be specified by including several parameters such as covar