ترغب بنشر مسار تعليمي؟ اضغط هنا

Regularized Minimax Conditional Entropy for Crowdsourcing

151   0   0.0 ( 0 )
 نشر من قبل Dengyong Zhou
 تاريخ النشر 2015
والبحث باللغة English




اسأل ChatGPT حول البحث

There is a rapidly increasing interest in crowdsourcing for data labeling. By crowdsourcing, a large number of labels can be often quickly gathered at low cost. However, the labels provided by the crowdsourcing workers are usually not of high quality. In this paper, we propose a minimax conditional entropy principle to infer ground truth from noisy crowdsourced labels. Under this principle, we derive a unique probabilistic labeling model jointly parameterized by worker ability and item difficulty. We also propose an objective measurement principle, and show that our method is the only method which satisfies this objective measurement principle. We validate our method through a variety of real crowdsourcing datasets with binary, multiclass or ordinal labels.



قيم البحث

اقرأ أيضاً

126 - Donghoon Lee 2020
Entropy augmented to reward is known to soften the greedy argmax policy to softmax policy. Entropy augmentation is reformulated and leads to a motivation to introduce an additional entropy term to the objective function in the form of KL-divergence t o regularize optimization process. It results in a policy which monotonically improves while interpolating from the current policy to the softmax greedy policy. This policy is used to build a continuously parameterized algorithm which optimize policy and Q-function simultaneously and whose extreme limits correspond to policy gradient and Q-learning, respectively. Experiments show that there can be a performance gain using an intermediate algorithm.
Maximum a posteriori (MAP) inference in discrete-valued Markov random fields is a fundamental problem in machine learning that involves identifying the most likely configuration of random variables given a distribution. Due to the difficulty of this combinatorial problem, linear programming (LP) relaxations are commonly used to derive specialized message passing algorithms that are often interpreted as coordinate descent on the dual LP. To achieve more desirable computational properties, a number of methods regularize the LP with an entropy term, leading to a class of smooth message passing algorithms with convergence guarantees. In this paper, we present randomized methods for accelerating these algorithms by leveraging techniques that underlie classical accelerated gradient methods. The proposed algorithms incorporate the familiar steps of standard smooth message passing algorithms, which can be viewed as coordinate minimization steps. We show that these accelerated variants achieve faster rates for finding $epsilon$-optimal points of the unregularized problem, and, when the LP is tight, we prove that the proposed algorithms recover the true MAP solution in fewer iterations than standard message passing algorithms.
Deep neural networks enjoy a powerful representation and have proven effective in a number of applications. However, recent advances show that deep neural networks are vulnerable to adversarial attacks incurred by the so-called adversarial examples. Although the adversarial example is only slightly different from the input sample, the neural network classifies it as the wrong class. In order to alleviate this problem, we propose the Deep Minimax Probability Machine (DeepMPM), which applies MPM to deep neural networks in an end-to-end fashion. In a worst-case scenario, MPM tries to minimize an upper bound of misclassification probabilities, considering the global information (i.e., mean and covariance information of each class). DeepMPM can be more robust since it learns the worst-case bound on the probability of misclassification of future data. Experiments on two real-world datasets can achieve comparable classification performance with CNN, while can be more robust on adversarial attacks.
We design and mathematically analyze sampling-based algorithms for regularized loss minimization problems that are implementable in popular computational models for large data, in which the access to the data is restricted in some way. Our main resul t is that if the regularizers effect does not become negligible as the norm of the hypothesis scales, and as the data scales, then a uniform sample of modest size is with high probability a coreset. In the case that the loss function is either logistic regression or soft-margin support vector machines, and the regularizer is one of the common recommended choices, this result implies that a uniform sample of size $O(d sqrt{n})$ is with high probability a coreset of $n$ points in $Re^d$. We contrast this upper bound with two lower bounds. The first lower bound shows that our analysis of uniform sampling is tight; that is, a smaller uniform sample will likely not be a core set. The second lower bound shows that in some sense uniform sampling is close to optimal, as significantly smaller core sets do not generally exist.
122 - Jihun Hamm , Yung-Kyun Noh 2018
Minimax optimization plays a key role in adversarial training of machine learning algorithms, such as learning generative models, domain adaptation, privacy preservation, and robust learning. In this paper, we demonstrate the failure of alternating g radient descent in minimax optimization problems due to the discontinuity of solutions of the inner maximization. To address this, we propose a new epsilon-subgradient descent algorithm that addresses this problem by simultaneously tracking K candidate solutions. Practically, the algorithm can find solutions that previous saddle-point algorithms cannot find, with only a sublinear increase of complexity in K. We analyze the conditions under which the algorithm converges to the true solution in detail. A significant improvement in stability and convergence speed of the algorithm is observed in simple representative problems, GAN training, and domain-adaptation problems.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا