ترغب بنشر مسار تعليمي؟ اضغط هنا

The $B to D ell u$ form factors at nonzero recoil and $|V_{cb}|$ from $2+1$-flavor lattice QCD

345   0   0.0 ( 0 )
 نشر من قبل Carleton DeTar
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first unquenched lattice-QCD calculation of the hadronic form factors for the exclusive decay $overline{B} rightarrow D ell overline{ u}$ at nonzero recoil. We carry out numerical simulations on fourteen ensembles of gauge-field configurations generated with 2+1 flavors of asqtad-improved staggered sea quarks. The ensembles encompass a wide range of lattice spacings (approximately 0.045 to 0.12 fm) and ratios of light (up and down) to strange sea-quark masses ranging from 0.05 to 0.4. For the $b$ and $c$ valence quarks we use improved Wilson fermions with the Fermilab interpretation, while for the light valence quarks we use asqtad-improved staggered fermions. We extrapolate our results to the physical point using rooted staggered heavy-light meson chiral perturbation theory. We then parameterize the form factors and extend them to the full kinematic range using model-independent functions based on analyticity and unitarity. We present our final results for $f_+(q^2)$ and $f_0(q^2)$, including statistical and systematic errors, as coefficients of a series in the variable $z$ and the covariance matrix between these coefficients. We then fit the lattice form-factor data jointly with the experimentally measured differential decay rate from BaBar to determine the CKM matrix element, $|V_{cb}|=(39.6 pm 1.7_{rm QCD+exp} pm 0.2_{rm QED})times 10^{-3}$. As a byproduct of the joint fit we obtain the form factors with improved precision at large recoil. Finally, we use them to update our calculation of the ratio $R(D)$ in the Standard Model, which yields $R(D) = 0.299(11)$.



قيم البحث

اقرأ أيضاً

123 - A. Bazavov 2021
We present the first unquenched lattice-QCD calculation of the form factors for the decay $Bto D^astell u$ at nonzero recoil. Our analysis includes 15 MILC ensembles with $N_f = 2+1$ flavors of asqtad sea quarks, with a strange quark mass close to it s physical mass. The lattice spacings range from $aapprox 0.15$ fm down to $0.045$ fm, while the ratio between the light- and the strange-quark masses ranges from 0.05 to 0.4. The valence b and c quarks are treated using the Wilson-clover action with the Fermilab interpretation, whereas the light sector employs asqtad staggered fermions. We extrapolate our results to the physical point in the continuum limit using rooted staggered heavy-light meson chiral perturbation theory. Then we apply a model-independent parametrization to extend the form factors to the full kinematic range. With this parametrization we perform a joint lattice-QCD/experiment fit using several experimental datasets to determine the CKM matrix element $|V_{cb}| = (38.40 pm 0.66_{text{th}} pm 0.34_{text{exp}}) times 10^{-3}$, where the first error is theoretical and the second comes from experiment. This result is still in tension with current inclusive determinations, but it is in agreement with previous exclusive determinations. We also integrate the differential decay rate obtained solely from lattice data to predict $R(D^ast) = 0.265 pm 0.013$, which confirms the current tension between theory and experiment.
101 - Andrew Lytle 2020
I discuss recent progress in lattice calculations of $B to D^{(*)} ell u$ form factors, important for the precision determination of $|V_{cb}|$ in the Standard Model (SM), and for testing SM expectations of lepton flavor universality in observables $R(D^{(*)})$. I also discuss progress in calculations of the related $b to c$ semileptonic decays $B_s to D_s^{(*)} ell u$ and $B_c to J/psi , ell u$ now experimentally accessible at the LHC.
We calculate the $B topiell u$ and $B_s to K ell u$ form factors in dynamical lattice QCD. We use the (2+1)-flavor RBC-UKQCD gauge-field ensembles generated with the domain-wall fermion and Iwasaki gauge actions. For the $b$ quarks we use the anisotr opic clover action with a relativistic heavy-quark interpretation. We analyze two lattice spacings $a approx 0.11, 0.086$ fm and unitary pion masses as light as $M_pi approx 290$ MeV. We simultaneously extrapolate our numerical results to the physical light-quark masses and to the continuum and interpolate in the pion/kaon energy using SU(2) hard-pion chiral perturbation theory. We provide complete error budgets for the form factors $f_+(q^2)$ and $f_0(q^2)$ at three momenta that span the $q^2$ range accessible in our numerical simulations. We extrapolate these results to $q^2 = 0$ using a model-independent $z$-parametrization and present our final form factors as the $z$-coefficients and the matrix of correlations between them. Our results agree with other lattice determinations using staggered light quarks and provide important independent cross-checks. Both $B topiell u$ and $B_s to K ell u$ decays enable a determination of the CKM matrix element $|V_{ub}|$. To illustrate this, we perform a combined $z$-fit of our numerical $Btopiell u$ form-factor data with the experimental branching-fraction measurements leaving the relative normalization as a free parameter; we obtain $|V_{ub}| = 3.61(32) times 10^{-3}$, where the error includes statistical and systematic uncertainties. This approach can be applied to $B_sto K ell u$ decay to determine $|V_{ub}|$ once the process has been measured experimentally. Finally, in anticipation of future measurements, we make predictions for $B to piell u$ and $B_sto K ell u$ Standard-Model differential branching fractions and forward-backward asymmetries.
115 - T. Kaneko , Y. Aoki , G. Bailas 2019
We report on our calculation of the B to D^(*) ell u form factors in 2+1 flavor lattice QCD. The Mobius domain-wall action is employed for light, strange, charm and bottom quarks. At lattice cutoffs 1/a sim 2.4, 3.6 and 4.5 GeV, we simulate bottom q uark masses up to 0.7/a to control discretization errors. The pion mass is as low as 230 MeV. We extrapolate the form factors to the continuum limit and physical quark masses, and make a comparison with recent phenomenological analyses.
We report on our study of the B to D^(*) ell u semileptonic decays at zero and nonzero recoils in 2+1 flavor QCD. The Mobius domain-wall action is employed for light, charm and bottom quarks at lattice cutoffs 1/a = 2.5 and 3.6 GeV. We take bottom q uark masses up to approx 2.4 times the physical charm mass to control discretization effects. The pion mass is as low as M_pi sim 310 MeV. We present our preliminary results for the relevant form factors and discuss the violation of heavy quark symmetry, which is a recent important isuue on the long-standing tension in the Cabibbo-Kobayashi-Maskawa matrix element |V_{cb}| between the exclusive and inclusive decays.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا