ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic structure of the antiferromagnetic Kondo lattice compounds CeRhAl4Si2 and CeIrAl4Si2

195   0   0.0 ( 0 )
 نشر من قبل Nirmal Ghimire
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have investigated the magnetic ground state of the antiferromagnetic Kondo-lattice compounds CeMAl$_{4}$Si$_{2}$ (M = Rh, Ir) using neutron powder diffraction. Although both of these compounds show two magnetic transitions $T_{N1}$ and $T_{N2}$ in the bulk properties measurements, evidence for magnetic long-range order was only found below the lower transition $T_{N2}$. Analysis of the diffraction profiles reveals a commensurate antiferromagnetic structure with a propagation vector $mathbf{k}$= (0, 0, 1/2). The magnetic moment in the ordered state of CeRhAl$_{4}$Si$_{2}$ and CeIrAl$_{4}$Si$_{2}$ were determined to be 1.14(2) and 1.41(3) $mu_{B}$/Ce, respectively, and are parallel to the crystallographic $c$-axis in agreement with magnetic susceptibility measurements.



قيم البحث

اقرأ أيضاً

Magnetization, heat capacity, electrical resistivity, thermoelectric power, and Hall effect have been investigated on single-crystalline Ce_2PdSi_3. This compound is shown to order antiferromagnetically below Neel temperature (T_N) ~3 K. The Sommerfe ld coefficient far below T_N is found to be about 110 mJ/K^2 mol Ce, which indicates the heavy-fermion character of this compound. The transport and magnetic properties exhibit large anisotropy with an interplay between crystalline-electric-field (CEF) and Kondo effects. The sign of thermoelectric power is opposite for different directions at high temperatures and the ordinary Hall coefficient is anisotropic with opposite sign for different geometries, indicating the anisotropic Fermi surface. The CEF analysis from the temperature dependence of magnetic susceptibility suggests that the ground state is |+/-1/2>. The first and the second excited CEF doublet levels are found to be located at about 30 and 130 K, respectively. The Kondo temperature is estimated to be the same order as T_N, indicating the presence of a delicate competition between the Kondo effect and magnetic order.
171 - Yongkang Luo , Han Han , Hao Tan 2011
A cerium containing pnictide, CeNiAsO, crystallized in the ZrCuSiAs type structure, has been investigated by measuring transport and magnetic properties, as well as specific heat. We found that CeNiAsO is an antiferromagnetic dense Kondo lattice meta llic compound with Kondo scale $T_K sim$ 15 K and shows an enhanced Sommerfeld coefficient of $gamma_0 sim$ 203 mJ/mol$cdot$K$^{2}$. While no superconductivity can been observed down to 30 mK, Ce ions exhibit two successive antiferromagnetic (AFM) transitions. We propose that the magnetic moment of Ce ion could align in the G type AFM order below the first transition at $T_{N1}$=9.3 K, and it might be modified into the C type AFM order below a lower transition at $T_{N2}$=7.3 K. Our results indicate that the 3$d-4f$ interlayer Kondo interactions play an important role in Ni-based Ce-containing pnictide.
267 - S. Chang , P.G. Pagliuso , Wei Bao 2002
The magnetic structure of antiferromagnetic NdRhIn5 has been determined using neutron diffraction. It has a commensurate antiferromagnetic structure with a magnetic wave vector (1/2,0,1/2) below T_N = 11K. The staggered Nd moment at 1.6K is 2.6mu_B a ligned along the c-axis. We find the magnetic structure to be closely related to that of its cubic parent compound NdIn3 below 4.6K. The enhanced T_N and the absence of additional transitions below T_N for NdRhIn5 are interpreted in terms of an improved matching of the crystalline-electric-field (CEF), magnetocrystalline, and exchange interaction anisotropies. In comparison, the role of these competing anisotropies on the magnetic properties of the structurally related compound CeRhIn5 is discussed.
Magnetic properties of uranium and neptunium compounds showing the coexistence of Kondo screening effect and ferromagnetic order are investigated within the Anderson lattice Hamiltonian with a two-fold degenerate $f$-level in each site, corresponding to $5f^2$ electronic configuration with $S=1$ spins. A derivation of the Schrieffer-Wolff transformation is presented and the resulting Hamiltonian has an effective $f$-band term, in addition to the regular exchange Kondo interaction between the $S=1$ $f$-spins and the $s=1/2$ spins of the conduction electrons. The obtained effective Kondo lattice model can describe both the Kondo regime and a weak delocalization of $5f$-electron. Within this model we compute the Kondo and Curie temperatures as a function of model parameters, namely the Kondo exchange interaction constant $J_K$, the magnetic intersite exchange interaction $J_H$ and the effective $f$-bandwidth. We deduce, therefore, a phase diagram of the model which yields the coexistence of Kondo effect and ferromagnetic ordering and also accounts for the pressure dependence of the Curie temperature of uranium compounds such as UTe.
We report neutron scattering experiments performed to investigate the dynamic magnetic properties of the Kondo-lattice compound YbNi2B2C. The spectrum of magnetic excitations is found to be broad, extending up to at least 150 meV, and contains inelas tic peaks centred near 18 meV and 43 meV. At low energies we observe quasielastic scattering with a width Gamma = 2.1 meV. The results suggest a Yb3+ ground state with predominantly localized 4f electrons subject to (i) a crystalline electric field (CEF) potential, and (ii) a Kondo interaction, which at low temperatures is about an order of magnitude smaller than the CEF interaction. From an analysis of the dynamic magnetic response we conclude that the crystalline electric field acting on the Yb ions has a similar anisotropy to that in other RNi2B2C compounds, but is uniformly enhanced by almost a factor of 2. The static and dynamic magnetic properties of YbNi2B2C are found to be reconciled quite well by means of an approximation scheme to the Anderson impurity model, and this procedure also indicates that the effective Kondo interaction varies with temperature due to the crystal field splitting. We discuss the nature of the correlated-electron ground state of YbNi2B2C based on these and other experimental results, and suggest that this compound might be close to a quantum critical point on the non-magnetic side.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا