ﻻ يوجد ملخص باللغة العربية
We show how the dynamical modulation of the qubit-field coupling strength in a circuit quantum electrodynamics architecture mimics the motion of the qubit at relativistic speeds. This allows us to propose a realistic experiment to detect microwave photons coming from simulated acceleration radiation. Moreover, by combining this technique with the dynamical Casimir physics, we enhance the toolbox for studying relativistic phenomena in quantum field theory with superconducting circuits.
A quantum computer will use the properties of quantum physics to solve certain computational problems much faster than otherwise possible. One promising potential implementation is to use superconducting quantum bits in the circuit quantum electrodyn
In recent years, there has been a significant progress in the development of digital quantum processors. The state-of-the-art quantum devices are imperfect, and fully-algorithmic fault-tolerant quantum computing is a matter of future. Until technolog
Dynamical error suppression techniques are commonly used to improve coherence in quantum systems. They reduce dephasing errors by applying control pulses designed to reverse erroneous coherent evolution driven by environmental noise. However, such me
Quantum annealing (QA) is a heuristic algorithm for finding low-energy configurations of a system, with applications in optimization, machine learning, and quantum simulation. Up to now, all implementations of QA have been limited to qubits coupled v
We characterize a superconducting qubit before and after embedding it along with its package in an absorptive medium. We observe a drastic improvement in the effective qubit temperature and over a tenfold improvement in the relaxation time up to 5.7