ﻻ يوجد ملخص باللغة العربية
We present an experiment in which a one-bit memory is constructed, using a system of a single colloidal particle trapped in a modulated double-well potential. We measure the amount of heat dissipated to erase a bit and we establish that in the limit of long erasure cycles the mean dissipated heat saturates at the Landauer bound, i.e. the minimal quantity of heat necessarily produced to delete a classical bit of information. This result demonstrates the intimate link between information theory and thermodynamics. To stress this connection we also show that a detailed Jarzynski equality is verified, retrieving the Landauers bound independently of the work done on the system. The experimental details are presented and the experimental errors carefully discussed
In 1961, R. Landauer proposed the principle that logical irreversibility is associated with physical irreversibility and further theorized that the erasure of information is fundamentally a dissipative process. Landauer posited that a fundamental ene
Almost sixty years since Landauer linked the erasure of information with an increase of entropy, his famous erasure principle and byproducts like reversible computing are still subjected to debates in the scientific community. In this work we use the
The clean world of digital information is based on noisy physical devices. Landauers principle provides a deep connection between information processing and the underlying thermodynamics by setting a lower limit on the energy consumption and heat pro
New concepts from nonequilibrium thermodynamics are used to show that Landauers principle can be understood in terms of time asymmetry in the dynamical randomness generated by the physical process of the erasure of digital information. In this way, L
We investigate the performance of majority-logic decoding in both reversible and finite-time information erasure processes performed on macroscopic bits that contain $N$ microscopic binary units. While we show that for reversible erasure protocols si