ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlinear optical conductivity of $U(1)$ spin liquids with large spinon Fermi surfaces

124   0   0.0 ( 0 )
 نشر من قبل Yuanfei Ma
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we study the nonlinear current response of $U(1)$ spin liquids with large spinon Fermi surfaces under the perturbation of a time-dependent ac electric field $mathbf{E}(t)$ within the framework of an effective $U(1)$ gauge theory. In particular, the third-order nonlinear current response to ac electric fields is derived. We show that as in the case of linear current response, an in-gap power-law ($simomega^{eta}$) response is found for the nonlinear current at low frequency. The nonlinear susceptibility may also induce through process of third harmonic generation propagating EM wave with frequency $3omega$ inside the spin liquids.



قيم البحث

اقرأ أيضاً

148 - Yuan-Fei Ma , Tai-Kai Ng 2014
In this paper we study the optical properties of $U(1)$ spin liquids with large spinon Fermi surfaces based on a simple formula for the bulk optical conductivity obtained through the Ioffe-Larkin composition rule. We show that the optical conductivit y of $U(1)$ spin liquids at energies above the charge gap has a unique feature that distinguishes them from ordinary insulators. In particular we show the existence of a long-life surface plasmon mode propagating along the interface between a linear medium and the spin liquid at frequencies above the charge gap, which can be detected by the widely used Kretschmann-Raether three-layer configuration.
Recent theoretical studies have found quantum spin liquid states with spinon Fermi surfaces upon the application of a magnetic field on a gapped state with topological order. We investigate the thermal Hall conductivity across this transition, descri bing how the quantized thermal Hall conductivity of the gapped state changes to an unquantized thermal Hall conductivity in the gapless spinon Fermi surface state. We consider two cases, both of potential experimental interest: the state with non-Abelian Ising topological order on the honeycomb lattice, and the state with Abelian chiral spin liquid topological order on the triangular lattice.
We study the interplay of competing interactions in spin-$1/2$ triangular Heisenberg model through tuning the first- ($J_1$), second- ($J_2$), and third-neighbor ($J_3$) couplings. Based on large-scale density matrix renormalization group calculation , we identify a quantum phase diagram of the system and discover a new {it gapless} chiral spin liquid (CSL) phase in the intermediate $J_2$ and $J_3$ regime. This CSL state spontaneously breaks time-reversal symmetry with finite scalar chiral order, and it has gapless excitations implied by a vanishing spin triplet gap and a finite central charge on the cylinder. Moreover, the central charge grows rapidly with the cylinder circumference, indicating emergent spinon Fermi surfaces. To understand the numerical results we propose a parton mean-field spin liquid state, the $U(1)$ staggered flux state, which breaks time-reversal symmetry with chiral edge modes by adding a Chern insulator mass to Dirac spinons in the $U(1)$ Dirac spin liquid. This state also breaks lattice rotational symmetries and possesses two spinon Fermi surfaces driven by nonzero $J_2$ and $J_3$, which naturally explains the numerical results. To our knowledge, this is the first example of a gapless CSL state with coexisting spinon Fermi surfaces and chiral edge states, demonstrating the rich family of novel phases emergent from competing interactions in triangular-lattice magnets.
Recent experimental evidence for a field-induced quantum spin liquid (QSL) in $alpha$-RuCl$_3$ calls for an understanding for the ground state of honeycomb Kitaev model under a magnetic field. In this work we address the nature of an enigmatic gaples s paramagnetic phase in the antiferromagnetic Kitave model, under an intermediate magnetic field perpendicular to the plane. Combining theoretical and numerical efforts, we identify this gapless phase as a $U(1)$ QSL with spinon Fermi surfaces. We also reveal the nature of continuous quantum phase transitions involving this $U(1)$ QSL, and obtain a phase diagram of the Kitaev model as a function of bond anisotropy and perpendicular magnetic field.
Since their proposal nearly half a century ago, physicists have sought axions in both high energy and condensed matter settings. Despite intense and growing efforts, to date experimental success has been limited, with the most prominent results arisi ng in the context of topological insulators. Here we propose a novel mechanism whereby axions can be realized in quantum spin liquids. We discuss the necessary symmetry requirements and identify possible experimental realizations in candidate pyrochlore materials, such as ${text{Ba}_{3}text{Yb}_{2}text{Zn}_{5}text{O}_{11}}$. In this context, the axions couple both to the external and to the emergent electromagnetic fields. We show that the interaction between the axion and the emergent photon leads to a characteristic dynamical response, which can be measured experimentally in inelastic neutron scattering. This work sets the stage for studying axion electrodynamics in the highly tunable setting of frustrated magnets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا