ﻻ يوجد ملخص باللغة العربية
We study the survival probability associated with a semi-classical matrix Shrodinger operator that models the predissociation of a general molecule in the Born-Oppenheimer approximation. We show that it is given by its usual time-dependent exponential contribution, up to a reminder term that is exponentially small (in the semiclassical parameter) with arbitrarily large rate of decay. The result applies in any dimension, and in presence of a number of resonances that may tend to infinity as the semiclassical parameter tends to 0.
We consider Schroedinger operators on regular metric trees and prove Lieb-Thirring and Cwikel-Lieb-Rozenblum inequalities for their negative eigenvalues. The validity of these inequalities depends on the volume growth of the tree. We show that the bo
We show that for a Jacobi operator with coefficients whose (j+1)th moments are summable the jth derivative of the scattering matrix is in the Wiener algebra of functions with summable Fourier coefficients. We use this result to improve the known disp
We derive dispersion estimates for solutions of the one-dimensional discrete perturbed Dirac equation. To this end we develop basic scattering theory and establish a limiting absorption principle for discrete perturbed Dirac operators.
We prove various estimates for the first eigenvalue of the magnetic Dirichlet Laplacian on a bounded domain in two dimensions. When the magnetic field is constant, we give lower and upper bounds in terms of geometric quantities of the domain. We furt
We derive dispersion estimates for solutions of a one-dimensional discrete Dirac equations with a potential. In particular, we improve our previous result, weakening the conditions on the potential. To this end we also provide new results concerning