ترغب بنشر مسار تعليمي؟ اضغط هنا

Amenable groups and smooth topology of 4-manifolds

514   0   0.0 ( 0 )
 نشر من قبل Emmy Murphy
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A smooth five-dimensional s-cobordism becomes a smooth product if stabilized by a finite number n of $S^2xS^2x[0,1]$s. We show that for amenable fundamental groups, the minimal n is subextensive in covers, i.e., n(cover)/index(cover) has limit 0. We focus on the notion of sweepout width, which is a bridge between 4-dimensional topology and coarse geometry.



قيم البحث

اقرأ أيضاً

73 - Igor Nikolaev 2019
We construct a functor from the smooth 4-dimensional manifolds to the hyper-algebraic number fields, i.e. fields with non-commutative multiplication. It is proved that that the simply connected 4-manifolds correspond to the abelian extensions. We rec over the Rokhlin and Donaldsons Theorems from the Galois theory of the non-commutative fields.
107 - Christopher Scaduto 2018
We show that the set of even positive definite lattices that arise from smooth, simply-connected 4-manifolds bounded by a fixed homology 3-sphere can depend on more than the ranks of the lattices. We provide two homology 3-spheres with distinct sets of such lattices, each containing a distinct nonempty subset of the rank 24 Niemeier lattices.
For a non-compact n-manifold M let H(M) denote the group of homeomorphisms of M endowed with the Whitney topology and H_c(M) the subgroup of H(M) consisting of homeomorphisms with compact support. It is shown that the group H_c(M) is locally contract ible and the identity component H_0(M) of H(M) is an open normal subgroup in H_c(M). This induces the topological factorization H_c(M) approx H_0(M) times M_c(M) for the mapping class group M_c(M) = H_c(M)/H_0(M) with the discrete topology. Furthermore, for any non-compact surface M, the pair (H(M), H_c(M)) is locally homeomorphic to (square^w l_2,cbox^w l_2) at the identity id_M of M. Thus the group H_c(M) is an (l_2 times R^infty)-manifold. We also study topological properties of the group D(M) of diffeomorphisms of a non-compact smooth n-manifold M endowed with the Whitney C^infty-topology and the subgroup D_c(M) of D(M) consisting of all diffeomorphisms with compact support. It is shown that the pair (D(M),D_c(M)) is locally homeomorphic to (square^w l_2, cbox^w l_2) at the identity id_M of M. Hence the group D_c(M) is a topological (l_2 times R^infty)-manifold for any dimension n.
Let $W$ be a compact smooth $4$-manifold that deformation retract to a PL embedded closed surface. One can arrange the embedding to have at most one non-locally-flat point, and near the point the topology of the embedding is encoded in the singularit y knot $K$. If $K$ is slice, then $W$ has a smooth spine, i.e., deformation retracts onto a smoothly embedded surface. Using the obstructions from the Heegaard Floer homology and the high-dimensional surgery theory, we show that $W$ has no smooth spines if $K$ is a knot with nonzero Arf invariant, a nontrivial L-space knot, the connected sum of nontrivial L-space knots, or an alternating knot of signature $<-4$. We also discuss examples where the interior of $W$ is negatively curved.
84 - Thomas Haettel 2020
We prove that some classes of triangle-free Artin groups act properly on locally finite, finite-dimensional CAT(0) cube complexes. In particular, this provides the first examples of Artin groups that are properly cubulated but cannot be cocompactly c ubulated, even virtually. The existence of such a proper action has many interesting consequences for the group, notably the Haagerup property, and the Baum-Connes conjecture with coefficients.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا