ﻻ يوجد ملخص باللغة العربية
We consider the problem of recovering a low-rank tensor from its noisy observation. Previous work has shown a recovery guarantee with signal to noise ratio $O(n^{lceil K/2 rceil /2})$ for recovering a $K$th order rank one tensor of size $ntimes cdots times n$ by recursive unfolding. In this paper, we first improve this bound to $O(n^{K/4})$ by a much simpler approach, but with a more careful analysis. Then we propose a new norm called the subspace norm, which is based on the Kronecker products of factors obtained by the proposed simple estimator. The imposed Kronecker structure allows us to show a nearly ideal $O(sqrt{n}+sqrt{H^{K-1}})$ bound, in which the parameter $H$ controls the blend from the non-convex estimator to mode-wise nuclear norm minimization. Furthermore, we empirically demonstrate that the subspace norm achieves the nearly ideal denoising performance even with $H=O(1)$.
We discuss structured Schatten norms for tensor decomposition that includes two recently proposed norms (overlapped and latent) for convex-optimization-based tensor decomposition, and connect tensor decomposition with wider literature on structured s
One popular trend in meta-learning is to learn from many training tasks a common initialization for a gradient-based method that can be used to solve a new task with few samples. The theory of meta-learning is still in its early stages, with several
Though learning has become a core technology of modern information processing, there is now ample evidence that it can lead to biased, unsafe, and prejudiced solutions. The need to impose requirements on learning is therefore paramount, especially as
We consider the problem of strongly-convex online optimization in presence of adversarial delays; in a T-iteration online game, the feedback of the players query at time t is arbitrarily delayed by an adversary for d_t rounds and delivered before the
We investigate 1) the rate at which refined properties of the empirical risk---in particular, gradients---converge to their population counterparts in standard non-convex learning tasks, and 2) the consequences of this convergence for optimization. O