ترغب بنشر مسار تعليمي؟ اضغط هنا

Falsifying High-Scale Baryogenesis with Neutrinoless Double Beta Decay and Lepton Flavor Violation

187   0   0.0 ( 0 )
 نشر من قبل Julia Harz
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Interactions that manifest themselves as lepton number violating processes at low energies in combination with sphaleron transitions typically erase any preexisting baryon asymmetry of the Universe. In this article, we discuss the constraints obtained from an observation of neutrinoless double beta decay in this context. If a new physics mechanism of neutrinoless double beta decay other than the standard light neutrino exchange is observed, typical scenarios of high-scale baryogenesis will be excluded unless the baryon asymmetry is stabilized via some new mechanism. We also sketch how this conclusion can be extended beyond the first lepton generation by incorporating lepton flavor violating processes.



قيم البحث

اقرأ أيضاً

We discuss a mechanism of neutrinoless double beta decay, where neutrinos of different flavours come into play. This is realized by effective flavour-violating scalar interactions. As one consequence, we find that within the normal mass ordering the neutrino effective mass may no longer vanish due to contributions from other flavours. We evaluate the necessary nuclear matrix elements, consider the interference between the standard diagram and the new scalar one, and analyze a UV-complete model that realizes the scalar interaction. Tests of the complete model are possible at colliders and future neutrino experiments. Our scenario represents an alternative mechanism for neutrinoless double beta decay, where nevertheless lepton number violation resides only in Majorana mass terms of light neutrinos.
Inspired by the recent diboson excess observed at the LHC and possible interpretation within a TeV-scale Left-Right symmetric framework, we explore its implications for low-energy experiments searching for lepton number and flavor violation. Assuming a simple Type-II seesaw mechanism for neutrino masses, we show that for the right-handed (RH) gauge boson mass and coupling values required to explain the LHC anomalies, the RH contribution to the lepton number violating process of neutrinoless double beta decay ($0 ubetabeta$) is already constrained by current experiments for relatively low-mass (MeV-GeV) RH neutrinos. The future ton-scale $0 ubetabeta$ experiments could probe most of the remaining parameter space, irrespective of the neutrino mass hierarchy and uncertainties in the oscillation parameters and nuclear matrix elements. On the other hand, the RH contribution to the lepton flavor violating process of $muto egamma$ is constrained for relatively heavier (TeV) RH neutrinos, thus providing a complementary probe of the model. Finally, a measurement of the absolute light neutrino mass scale from future precision cosmology could make this scenario completely testable.
We analyse in detail the scalar triplet contribution to the low-energy lepton flavour violating (LFV) and lepton number violating (LNV) processes within a TeV-scale left-right symmetric framework. We show that in both type-I and type-II seesaw domina nce for the light neutrino masses, the triplet of mass comparable to or smaller than the largest right-handed neutrino mass scale can give sizeable contribution to the LFV processes, except in the quasi-degenerate limit of light neutrino masses, where a suppression can occur due to cancellations. In particular, a moderate value of the heaviest neutrino to scalar triplet mass ratio $rlesssim {cal O}(1)$ is still experimentally allowed and can be explored in the future LFV experiments. Similarly, the contribution of a relatively light triplet to the LNV process of neutrinoless double beta decay could be significant, disfavouring a part of the model parameter space otherwise allowed by LFV constraints. Nevertheless, we find regions of parameter space consistent with both LFV and LNV searches, for which the values of the total effective neutrino mass can be accessible to the next generation ton-scale experiments. Such light triplets can also be directly searched for at the LHC, thus providing a complementary probe of this scenario. Finally, we also study the implications of the triplet contribution for the left-right symmetric model interpretation of the recent diboson anomaly at the LHC.
While the detection of $W_R$-boson at the Large Hadron Collider is likely to resolve the mystery of parity violation in weak interaction, observation of neutrinoless double beta decay ($0 ubetabeta$) is expected to determine whether neutrinos are Maj orana fermions. In this work we consider a class of LR models with TeV scale $W_R, Z_R$ bosons but having parity restoration at high scales where they originate from well known Pati-Salam symmetry or $SO(10)$ grand unified theory minimally extended to accommodate inverse seesaw frame work for neutrino masses. Most dominant new contribution to neutrinoless double beta decay is noted to occur via $W_L^{-}W_L^{-}$ mediation involving lighter sterile neutrino exchanges. The next dominant contribution is found to be through $W_L^{-}W_R^{-}$ mediation involving both light and heavy right-handed neutrino or sterile neutrino exchanges. The quark-lepton symmetric origin of the computed value of the Dirac neutrino mass matrix is also found to play a crucial role in determining these and other results on lepton flavor violating branching ratios for $tau rightarrow e + gamma$, $tau rightarrow mu + gamma$, and $mu rightarrow e + gamma$ accessible to ongoing search experiments. The underlying non-unitarity matrix is found to manifest in substantial CP-violating effects even when the leptonic Dirac phase $delta_{rm CP} simeq 0, pi, 2 pi$. Finally we explore a possible origin of the model in non-supersymmetric SO(10) grand unified theory where, in addition to low mass $W_R^pm$ and $Z_R$ bosons accessible to Large Hadron Collider, the model is found to predict observable neutron-antineutron oscillation and lepto-quark gauge boson mediated rare kaon decay with $mbox{Br} left(K_{rm L} rightarrow mu, bar{e}right) simeq left(10^{-9}- 10^{-11} right)$.
285 - C. H. Jang , B. J. Kim , Y. J. Ko 2018
Recent neutrino experiment results show a preference for the normal neutrino mass ordering. The global efforts to search for neutrinoless double beta decays undergo a broad gap with the approach to the prediction in the three-neutrino framework based on the normal ordering. This research is intended to show that it is possible to find a neutrinoless double beta decay signal even with normal ordered neutrino masses. We propose the existence of a light sterile neutrino as a solution to the higher effective mass of the electron neutrino expected by the current experiments. A few short-baseline oscillation experiments gave rise to a limit on the mass of the sterile neutrino and its mixing with the lightest neutrino. We demonstrate that the results of neutrinoless double beta decays can also narrow down the range of the mass and the mixing angle of the light sterile neutrino.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا