ﻻ يوجد ملخص باللغة العربية
The production factor, or broad band averaged cross-section, for solar wind charge-exchange with hydrogen producing emission in the ROSAT 1/4 keV (R12) band is $3.8pm0.2times10^{-20}$ count degree$^{-2}$ cm$^4$. This value is derived from a comparison of the Long-Term (background) Enhancements in the ROSAT All-Sky Survey with magnetohysdrodynamic simulations of the magnetosheath. This value is 1.8 to 4.5 times higher than values derived from limited atomic data, suggesting that those values may be missing a large number of faint lines. This production factor is important for deriving the exact amount of 1/4 keV band flux that is due to the Local Hot Bubble, for planning future observations in the 1/4 keV band, and for evaluating proposals for remote sensing of the magnetosheath. The same method cannot be applied to the 3/4 keV band as that band, being composed primarily of the oxygen lines, is far more sensitive to the detailed abundances and ionization balance in the solar wind. We also show, incidentally, that recent efforts to correlate XMM-Newton observing geometry with magnetosheath solar wind charge-exchange emission in the oxygen lines have been, quite literally, misguided. Simulations of the inner heliosphere show that broader efforts to correlate heliospheric solar wind charge-exchange with local solar wind parameters are unlikely to produce useful results.
DXL (Diffuse X-ray emission from the Local Galaxy) is a sounding rocket mission designed to estimate the contribution of Solar Wind Charge eXchange (SWCX) to the Diffuse X-ray Background (DXB) and to help determine the properties of the Local Hot Bub
A new and more comprehensive model of charge-exchange induced X-ray emission, due to ions precipitating into the Jovian atmosphere near the poles, has been used to analyze spectral observations made by the Chandra X-ray Observatory. The model include
Interstellar neutral atoms provide a remote diagnostic of plasma in the outer heliosheath and the very local interstellar medium via charge exchange collisions that convert ions into atoms and vice versa. So far, most studies of interstellar atoms as
Dispersive delays due to the Solar wind introduce excess noise in high-precision pulsar timing experiments, and must be removed in order to achieve the accuracy needed to detect, e.g., low-frequency gravitational waves. In current pulsar timing exper
We report an apparent detection of the C VI 4p to 1s transition line at 459 eV, during a long-term enhancement (LTE) in the Suzaku north ecliptic pole (NEP) observation of 2005 September 2. The observed intensity of the line is comparable to that of