ﻻ يوجد ملخص باللغة العربية
Let $F_g$ denote a closed oriented surface of genus $g$. A set of simple closed curves is called a filling of $F_g$ if its complement is a disjoint union of discs. The mapping class group $text{Mod}(F_g)$ of genus $g$ acts on the set of fillings of $F_g$. The union of the curves in a filling forms a graph on the surface which is a so-called decorated fat graph. It is a fact that two fillings of $F_g$ are in the same $text{Mod}(F_g)$-orbit if and only if the corresponding fat graphs are isomorphic. We prove that any filling of $F_2$ whose complement is a single disc (i.e., a so-called minimal filling) has either three or four closed curves and in each of these two cases, there is a unique such filling up to the action of $text{Mod}(F_2)$. We provide a constructive proof to show that the minimum number of discs in the complement of a filling pair of $F_2$ is two. Finally, given positive integers $g$ and $k$ with $(g, k) eq (2, 1)$, we construct a filling pair of $F_g$ such that the complement is a union of $k$ topological discs.
Let $F_g$ be a closed orientable surface of genus $g$. A set $Omega = { gamma_1, dots, gamma_s}$ of pairwise non-homotopic simple closed curves on $F_g$ is called a emph{filling system} or simply a emph{filling} of $F_g$, if $F_gsetminus Omega$ is a
This note is about a type of quantitative density of closed geodesics on closed hyperbolic surfaces. The main results are upper bounds on the length of the shortest closed geodesic that $varepsilon$-fills the surface.
We introduce the concept of a bridge trisection of a neatly embedded surface in a compact four-manifold, generalizing previous work with Alexander Zupan in the setting of closed surfaces in closed four-manifolds. Our main result states that any neatl
The notions of discrete conformality on triangle meshes have rich mathematical theories and wide applications. The related notions of discrete uniformizations on triangle meshes, suggest efficient methods for computing the uniformizations of surfaces
We present a practical algorithm to test whether a 3-manifold given by a triangulation or an ideal triangulation contains a closed essential surface. This property has important theoretical and algorithmic consequences. As a testament to its practica