ﻻ يوجد ملخص باللغة العربية
We perform a weak-lensing study of the nearby cool-core galaxy clusters, Hydra A ($z=0.0538$) and A478 ($z=0.0881$), of which brightest cluster galaxies (BCGs) host powerful activities of active galactic nuclei (AGNs). For each cluster, the observed tangential shear profile is well described either by a single Navarro--Frenk--White model or a two-component model including the BCG as an unresolved point mass. For A478, we determine the BCG and its host-halo masses from a joint fit to weak-lensing and stellar photometry measurements. We find that the choice of initial mass functions (IMFs) can introduce a factor of two uncertainty in the BCG mass, whereas the BCG host halo mass is well constrained by data. We perform a joint analysis of weak-lensing and stellar kinematics data available for the Hydra A cluster, which allows us to constrain the central mass profile without assuming specific IMFs. We find that the central mass profile ($r<300$kpc) determined from the joint analysis is in excellent agreement with those from independent measurements, including dynamical masses estimated from the cold gas disk component, X-ray hydrostatic total mass estimates, and the central stellar mass estimated based on the Salpeter IMF. The observed dark-matter fraction around the BCG for Hydra A is found to be smaller than those predicted by adiabatic contraction models, suggesting the importance of other physical processes, such as the the AGN feedback and/or dissipationless mergers.
We present multi-wavelength observations of the centre of RXCJ1504.1-0248 - the galaxy cluster with the most luminous and relatively nearby cool core at z~0.2. Although there are several galaxies within 100 kpc of the cluster core, only the brightest
In this work we propose a new diagnostic to segregate cool core (CC) clusters from non-cool core (NCC) clusters by studying the two-dimensional power spectra of the X-ray images observed with the Chandra X-ray observatory. Our sample contains 41 memb
The thermodynamic structure of hot gas in galaxy clusters is sensitive to astrophysical processes and typically difficult to model with galaxy formation simulations. We explore the fraction of cool-core (CC) clusters in a large sample of $370$ cluste
We present a multi-wavelength analysis of the four most relaxed clusters in the South Pole Telescope 2500 deg^2 survey, which lie at 0.55 < z < 0.75. This study, which utilizes new, deep data from Chandra and Hubble, along with ground-based spectrosc
We compare X-ray and caustic mass profiles for a sample of 16 massive galaxy clusters. We assume hydrostatic equilibrium in interpreting the X-ray data, and use large samples of cluster members with redshifts as a basis for applying the caustic techn