ﻻ يوجد ملخص باللغة العربية
An odd-rule cellular automaton (CA) is defined by specifying a neighborhood for each cell, with the rule that a cell turns ON if it is in the neighborhood of an odd number of ON cells at the previous generation, and otherwise turns OFF. We classify all the odd-rule CAs defined by neighborhoods which are subsets of a 3 X 3 grid of square cells. There are 86 different CAs modulo trivial symmetries. When we consider only the different sequences giving the number of ON cells after n generations, the number drops to 48, two of which are the Moore and von Neumann CAs. This classification is carried out by using the meta-algorithm described in an earlier paper to derive the generating functions for the 86 sequences, and then removing duplicates. The fastest-growing of these CAs is neither the Fredkin nor von Neumann neighborhood, but instead is one defined by Odd-rule 365, which turns ON almost 75% of all possible cells.
If a cellular automaton (CA) is started with a single ON cell, how many cells will be ON after n generations? For certain odd-rule CAs, including Rule 150, Rule 614, and Fredkins Replicator, the answer can be found by using the combination of a new t
In addition to the $lambda$ parameter, we have found another parameter which characterize the class III, class II and class IV patterns more quantitatively. It explains why the different classes of patterns coexist at the same $lambda$. With this par
We present an intuitive formalism for implementing cellular automata on arbitrary topologies. By that means, we identify a symmetry operation in the class of elementary cellular automata. Moreover, we determine the subset of topologically sensitive e
In this paper we study the family of freezing cellular automata (FCA) in the context of asynchronous updating schemes. A cellular automaton is called freezing if there exists an order of its states, and the transitions are only allowed to go from a l
In this paper we show that for integers $sgeq2$, $tgeq1$, any co-edge-regular graph which is cospectral with the $s$-clique extension of the $ttimes t$-grid is the $s$-clique extension of the $ttimes t$-grid, if $t$ is large enough. Gavrilyuk and Koo