ﻻ يوجد ملخص باللغة العربية
We construct new symmetric Hadamard matrices of orders $92,116$, and $172$. While the existence of those of order $92$ was known since 1978, the orders $116$ and $172$ are new. Our construction is based on a recent new combinatorial array discovered by N. A. Balonin and J. Seberry. For order $116$ we used an adaptation of an algorithm for parallel collision search. The adaptation pertains to the modification of some aspects of the algorithm to make it suitable to solve a 3-way matching problem. We also point out that a new infinite series of symmetric Hadamard matrices arises by plugging into the GP array the matrices constructed by Xia, Xia, Seberry, and Wu in 2005.
In this paper, we generalize classical constructions of skew Hadamard difference families with two or four blocks in the additive groups of finite fields given by Szekeres (1969, 1971), Whiteman (1971) and Wallis-Whiteman (1972). In particular, we sh
In this paper, we obtain a number of new infinite families of Hadamard matrices. Our constructions are based on four new constructions of difference families with four or eight blocks. By applying the Wallis-Whiteman array or the Kharaghani array to
Let $q$ be a prime power of the form $q=12c^2+4c+3$ with $c$ an arbitrary integer. In this paper we construct a difference family with parameters $(2q^2;q^2,q^2,q^2,q^2-1;2q^2-2)$ in ${mathbb Z}_2times ({mathbb F}_{q^2},+)$. As a consequence, by appl
If $q = p^n$ is a prime power, then a $d$-dimensional emph{$q$-Butson Hadamard matrix} $H$ is a $dtimes d$ matrix with all entries $q$th roots of unity such that $HH^* = dI_d$. We use algebraic number theory to prove a strong constraint on the dimens
We investigate polynomials, called m-polynomials, whose generator polynomial has coefficients that can be arranged as a matrix, where q is a positive integer greater than one. Orthogonality relations are established and coefficients are obtained for