ﻻ يوجد ملخص باللغة العربية
We show that every finite Abelian algebra A from congruence-permutable varieties admits a full duality. In the process, we prove that A also allows a strong duality, and that the duality may be induced by a dualizing structure of finite type. We give an explicit bound on the arities of the partial and total operations appearing in the dualizing structure. In addition, we show that the enriched partial hom-clone of A is finitely generated as a clone.
A finite algebra $bA=alg{A;cF}$ is emph{dualizable} if there exists a discrete topological relational structure $BA=alg{A;cG;cT}$, compatible with $cF$, such that the canonical evaluation map $e_{bB}colon bBto Hom( Hom(bB,bA),BA)$ is an isomorphism f
Let g be a free brace algebra. This structure implies that g is also a prelie algebra and a Lie algebra. It is already known that g is a free Lie algebra. We prove here that g is also a free prelie algebra, using a description of g with the help of p
We extend the classification of solvable Lie algebras with abelian nilradicals to classify solvable Leibniz algebras which are one dimensional extensions of an abelian nilradicals.
We prove that free pre-Lie algebras, when considered as Lie algebras, are free. Working in the category of S-modules, we define a natural filtration on the space of generators. We also relate the symmetric group action on generators with the structure of the anticyclic PreLie operad.
In this paper, we introduce the notion of a derivation of a Hom-Lie algebra and construct the corresponding strict Hom-Lie 2-algebra, which is called the derivation Hom-Lie 2-algebra. As applications, we study non-abelian extensions of Hom-Lie algebr