ﻻ يوجد ملخص باللغة العربية
In medical research, it is common to collect information of multiple continuous biomarkers to improve the accuracy of diagnostic tests. Combining the measurements of these biomarkers into one single score is a popular practice to integrate the collected information, where the accuracy of the resultant diagnostic test is usually improved. To measure the accuracy of a diagnostic test, the Youden index has been widely used in literature. Various parametric and nonparametric methods have been proposed to linearly combine biomarkers so that the corresponding Youden index can be optimized. Yet there seems to be little justification of enforcing such a linear combination. This paper proposes a flexible approach that allows both linear and nonlinear combinations of biomarkers. The proposed approach formulates the problem in a large margin classification framework, where the combination function is embedded in a flexible reproducing kernel Hilbert space. Advantages of the proposed approach are demonstrated in a variety of simulated experiments as well as a real application to a liver disorder study.
The development of a new diagnostic test ideally follows a sequence of stages which, amongst other aims, evaluate technical performance. This includes an analytical validity study, a diagnostic accuracy study and an interventional clinical utility st
We study the effects of Horndeski models of dark energy on the observables of the large-scale structure in the late time universe. A novel classification into {it Late dark energy}, {it Early dark energy} and {it Early modified gravity} scenarios is
While difference-in-differences (DID) was originally developed with one pre- and one post-treatment periods, data from additional pre-treatment periods is often available. How can researchers improve the DID design with such multiple pre-treatment pe
Muon beams of low emittance provide the basis for the intense, well-characterised neutrino beams of a neutrino factory and for multi-TeV lepton-antilepton collisions at a muon collider. The international Muon Ionization Cooling Experiment (MICE) has
A framework is presented to model instances and degrees of local item dependence within the context of diagnostic classification models (DCMs). The study considers an undirected graphical model to describe dependent structure of test items and draws