ﻻ يوجد ملخص باللغة العربية
This is a paper in a series systematically to study toroidal vertex algebras. Previously, a theory of toroidal vertex algebras and modules was developed and toroidal vertex algebras were explicitly associated to toroidal Lie algebras. In this paper, we study twisted modules for toroidal vertex algebras. More specifically, we introduce a notion of twisted module for a general toroidal vertex algebra with a finite order automorphism and we give a general construction of toroidal vertex algebras and twisted modules. We then use this construction to establish a natural association of toroidal vertex algebras and twisted modules to twisted toroidal Lie algebras. This together with some other known results implies that almost all extended affine Lie algebras can be associated to toroidal vertex algebras.
We develop a theory of toroidal vertex algebras and their modules, and we give a conceptual construction of toroidal vertex algebras and their modules. As an application, we associate toroidal vertex algebras and their modules to toroidal Lie algebras.
We study twisted modules for (weak) quantum vertex algebras and we give a conceptual construction of (weak) quantum vertex algebras and their twisted modules. As an application we construct and classify irreducible twisted modules for a certain family of quantum vertex algebras.
In this paper, we continue the study on toroidal vertex algebras initiated in cite{LTW}, to study concrete toroidal vertex algebras associated to toroidal Lie algebra $L_{r}(hat{frak{g}})=hat{frak{g}}otimes L_r$, where $hat{frak{g}}$ is an untwisted
We study $phi_epsilon$-coordinated modules for vertex algebras, where $phi_epsilon$ with $epsilon$ an integer parameter is a family of associates of the one-dimensional additive formal group. As the main results, we obtain a Jacobi type identity and
In this paper, we study nullity-2 toroidal extended affine Lie algebras in the context of vertex algebras and their $phi$-coordinated modules. Among the main results, we introduce a variant of toroidal extended affine Lie algebras, associate vert