ترغب بنشر مسار تعليمي؟ اضغط هنا

Parallelization of the SIR code for the investigation of small-scale features in the solar photosphere

157   0   0.0 ( 0 )
 نشر من قبل Stefan Thonhofer
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic fields are one of the most important drivers of the highly dynamic processes that occur in the lower solar atmosphere. They span a broad range of sizes, from large- and intermediate-scale structures such as sunspots, pores and magnetic knots, down to the smallest magnetic elements observable with current telescopes. On small scales, magnetic flux tubes are often visible as Magnetic Bright Points (MBPs). Apart from simple $V/I$ magnetograms, the most common method to deduce their magnetic properties is the inversion of spectropolarimetric data. Here we employ the SIR code for that purpose. SIR is a well-established tool that can derive not only the magnetic field vector and other atmospheric parameters (e.g., temperature, line-of-sight velocity), but also their stratifications with height, effectively producing 3-dimensional models of the lower solar atmosphere. In order to enhance the runtime performance and the usability of SIR we parallelized the existing code and standardized the input and output formats. This and other improvements make it feasible to invert extensive high-resolution data sets within a reasonable amount of computing time. An evaluation of the speedup of the parallel SIR code shows a substantial improvement in runtime.



قيم البحث

اقرأ أيضاً

While the longitudinal field that dominates photospheric network regions has been studied extensively, small scale transverse fields have recently been found to be ubiquitous in the quiet internetwork photosphere. Few observations have captured how t his field evolves. We aim to statistically characterise the magnetic properties and observe the temporal evolution of small scale magnetic features. We present two high spatial/temporal resolution observations that reveal the dynamics of two disk centre internetwork regions taken by the new GRIS/IFU (GREGOR Infrared Spectrograph Integral Field Unit) with the highly magnetically sensitive Fe I line pair at 15648.52 {AA} and 15652.87 {AA}. With the SIR code, we consider two inversion schemes: scheme 1 (S1), where a magnetic atmosphere is embedded in a field free medium, and scheme 2 (S2), with two magnetic models and a fixed stray light component. S1
Convective flows are known as the prime means of transporting magnetic fields on the solar surface. Thus, small magnetic structures are good tracers of the turbulent flows. We study the migration and dispersal of magnetic bright features (MBFs) in in tergranular areas observed at high spatial resolution with Sunrise/IMaX. We describe the flux dispersal of individual MBFs as a diffusion process whose parameters are computed for various areas in the quiet Sun and the vicinity of active regions from seeing-free data. We find that magnetic concentrations are best described as random walkers close to network areas (diffusion index, gamma=1.0), travelers with constant speeds over a supergranule (gamma=1.9-2.0), and decelerating movers in the vicinity of flux emergence and/or within active regions (gamma=1.4-1.5). The three types of regions host MBFs with mean diffusion coefficients of 130 km^2/s, 80-90 km^2/s, and 25-70 km^2/s, respectively. The MBFs in these three types of regions are found to display a distinct kinematic behavior at a confidence level in excess of 95%.
The ANTARES radiation hydrodynamics code is capable of simulating the solar granulation in detail unequaled by direct observation. We introduce a state-of-the-art numerical tool to the solar physics community and demonstrate its applicability to mode l the solar granulation. The code is based on the weighted essentially non-oscillatory finite volume method and by its implementation of local mesh refinement is also capable of simulating turbulent fluids. While the ANTARES code already provides promising insights into small-scale dynamical processes occurring in the quiet-Sun photosphere, it will soon be capable of modeling the latter in the scope of radiation magnetohydrodynamics. In this first preliminary study we focus on the vertical photospheric stratification by examining a 3-D model photosphere with an evolution time much larger than the dynamical timescales of the solar granulation and of particular large horizontal extent corresponding to $25! !! times , 25!$ on the solar surface to smooth out horizontal spatial inhomogeneities separately for up- and downflows. The highly resolved Cartesian grid thereby covers $sim 4~mathrm{Mm}$ of the upper convection zone and the adjacent photosphere. Correlation analysis, both local and two-point, provides a suitable means to probe the photospheric structure and thereby to identify several layers of characteristic dynamics: The thermal convection zone is found to reach some ten kilometers above the solar surface, while convectively overshooting gas penetrates even higher into the low photosphere. An $approx 145,mathrm{km}$ wide transition layer separates the convective from the oscillatory layers in the higher photosphere.
We detected 2.8 bright points (BPs) per Mm$^2$ in the Quiet Sun (QS) with the New Solar Telescope (NST) at Big Bear Solar Observatory; using the TiO 705.68 nm spectral line, at an angular resolution ~ 0.1 to obtain 30 min data sequence. Some BPs form ed knots that were stable in time and influenced the properties of the granulation pattern around them. The observed granulation pattern within ~ 3 of knots presents smaller granules than those observed in a normal granulation pattern; i.e., around the knots a suppressed convection is detected. Observed BPs covered ~ 5% of the solar surface and were not homogeneously distributed. BPs had an average size of 0.22, they were detectable for 4.28 min in average, and had an averaged contrast of 0.1% in the deep red TiO spectral line.
Low radio frequency solar observations using the Murchison Widefield Array have recently revealed the presence of numerous weak, short-lived and narrow-band emission features, even during moderately quiet solar conditions. These non-thermal features occur at rates of many thousands per hour in the 30.72 MHz observing bandwidth, and hence, necessarily require an automated approach for their detection and characterization. Here, we employ continuous wavelet transform using a mother Ricker wavelet for feature detection from the dynamic spectrum. We establish the efficacy of this approach and present the first statistically robust characterization of the properties of these features. In particular, we examine distributions of their peak flux densities, spectral spans, temporal spans and peak frequencies. We can reliably detect features weaker than 1 SFU, making them, to the best of our knowledge, the weakest bursts reported in literature. The distribution of their peak flux densities follows a power law with an index of -2.23 in the 12-155 SFU range, implying that they can provide an energetically significant contribution to coronal and chromospheric heating. These features typically last for 1-2 seconds and possess bandwidths of about 4-5 MHz. Their occurrence rate remains fairly flat in the 140-210 MHz frequency range. At the time resolution of the data, they appear as stationary bursts, exhibiting no perceptible frequency drift. These features also appear to ride on a broadband background continuum, hinting at the likelihood of them being weak type-I bursts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا