ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectroscopic survey of Kepler stars. I. HERMES/Mercator observations of A- and F-type stars

141   0   0.0 ( 0 )
 نشر من قبل Ewa Niemczura
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Kepler space mission provided near-continuous and high-precision photometry of about 207,000 stars, which can be used for asteroseismology. However, for successful seismic modelling it is equally important to have accurate stellar physical parameters. Therefore, supplementary ground-based data are needed. We report the results of the analysis of high-resolution spectroscopic data of A- and F-type stars from the Kepler field, which were obtained with the HERMES spectrograph on the Mercator telescope. We determined spectral types, atmospheric parameters and chemical abundances for a sample of 117 stars. Hydrogen Balmer, Fe I, and Fe II lines were used to derive effective temperatures, surface gravities, and microturbulent velocities. We determined chemical abundances and projected rotational velocities using a spectrum synthesis technique. The atmospheric parameters obtained were compared with those from the Kepler Input Catalogue (KIC), confirming that the KIC effective temperatures are underestimated for A stars. Effective temperatures calculated by spectral energy distribution fitting are in good agreement with those determined from the spectral line analysis. The analysed sample comprises stars with approximately solar chemical abundances, as well as chemically peculiar stars of the Am, Ap, and Lambda Boo types. The distribution of the projected rotational velocity, Vsini, is typical for A and F stars and ranges from 8 to about 280 km/s, with a mean of 134 km/s.



قيم البحث

اقرأ أيضاً

We have analysed high-resolution spectra of 28 A and 22 F stars in the Kepler field, observed with the FIES spectrograph at the Nordic Optical Telescope. We provide spectral types, atmospheric parameters and chemical abundances for 50 stars. Balmer, Fe I, and Fe II lines were used to derive effective temperatures, surface gravities, and microturbulent velocities. We determined chemical abundances and projected rotational velocities using a spectrum synthesis technique. Effective temperatures calculated by spectral energy distribution fitting are in good agreement with those determined from the spectral line analysis. The stars analysed include chemically peculiar stars of the Am and Lambda Boo types, as well as stars with approximately solar chemical abundances. The wide distribution of projected rotational velocity, Vsini, is typical for A and F stars. The microturbulence velocities obtained are typical for stars in the observed temperature and surface gravity ranges. Moreover, we affirm the results of Niemczura et al., that Am stars do not have systematically higher microturbulent velocities than normal stars of the same temperature.
We report on our search for spectroscopic binaries among a sample of AGB stars. Observations were carried out in the framework of the monitoring of radial velocities of (candidate) binary stars performed at the Mercator 1.2m telescope, using the HERM ES spectrograph. We found evidence for duplicity in UV Cam, TU Tau, BL Ori, VZ Per, T Dra, and V Hya. This short communication focus on V Hya, found to behave like RV Tau of the b subtype, which are binaries surrounded by a disc.
The Kepler spacecraft is providing time series of photometric data with micromagnitude precision for hundreds of A-F type stars. We present a first general characterization of the pulsational behaviour of A-F type stars as observed in the Kepler ligh t curves of a sample of 750 candidate A-F type stars. We propose three main groups to describe the observed variety in pulsating A-F type stars: gamma Dor, delta Sct, and hybrid stars. We assign 63% of our sample to one of the three groups, and identify the remaining part as rotationally modulated/active stars, binaries, stars of different spectral type, or stars that show no clear periodic variability. 23% of the stars (171 stars) are hybrid stars, which is a much larger fraction than what has been observed before. We characterize for the first time a large number of A-F type stars (475 stars) in terms of number of detected frequencies, frequency range, and typical pulsation amplitudes. The majority of hybrid stars show frequencies with all kinds of periodicities within the gamma Dor and delta Sct range, also between 5 and 10 c/d, which is a challenge for the current models. We find indications for the existence of delta Sct and gamma Dor stars beyond the edges of the current observational instability strips. The hybrid stars occupy the entire region within the delta Sct and gamma Dor instability strips, and beyond. Non-variable stars seem to exist within the instability strips. The location of gamma Dor and delta Sct classes in the (Teff,logg)-diagram has been extended. We investigate two newly constructed variables efficiency and energy as a means to explore the relation between gamma Dor and delta Sct stars. Our results suggest a revision of the current observational instability strips, and imply an investigation of other pulsation mechanisms to supplement the kappa mechanism and convective blocking effect to drive hybrid pulsations.
The Kepler spacecraft is providing photometric time series with micro-magnitude precision for thousands of variable stars. The continuous time-series of unprecedented time span open up opportunities to study the pulsational variability in much more d etail than was previously possible from the ground. We present a first general characterization of the variability of A-F type stars as observed in the Kepler light curves of a sample of 750 candidate A-F type stars, and investigate the relation between gamma Doradus, delta Scuti, and hybrid stars. Our results imply an investigation of pulsation mechanisms to supplement the kappa mechanism and convective blocking effect to drive hybrid pulsations and suggest a revision of the current observational instability strips of delta Scuti and gamma Doradus stars if the currently available values of effective temperature and surface gravity will be confirmed.
The analysis of the light curves of 48 B-type stars observed by Kepler is presented. Among these are 15 pulsating stars, all of which show low frequencies characteristic of SPB stars. Seven of these stars also show a few weak, isolated high frequenci es and they could be considered as SPB/beta Cep hybrids. In all cases the frequency spectra are quite different from what is seen from ground-based observations. We suggest that this is because most of the low frequencies are modes of high degree which are predicted to be unstable in models of mid-B stars. We find that there are non-pulsating stars within the beta Cep and SPB instability strips. Apart from the pulsating stars, we can identify stars with frequency groupings similar to what is seen in Be stars but which are not Be stars. The origin of the groupings is not clear, but may be related to rotation. We find periodic variations in other stars which we attribute to proximity effects in binary systems or possibly rotational modulation. We find no evidence for pulsating stars between the cool edge of the SPB and the hot edge of the delta Sct instability strips. None of the stars show the broad features which can be attributed to stochastically-excited modes as recently proposed. Among our sample of B stars are two chemically peculiar stars, one of which is a HgMn star showing rotational modulation in the light curve.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا