ﻻ يوجد ملخص باللغة العربية
Grinblat (2002) asks the following question in the context of algebras of sets: What is the smallest number $mathfrak v = mathfrak v(n)$ such that, if $A_1, ldots, A_n$ are $n$ equivalence relations on a common finite ground set $X$, such that for each $i$ there are at least $mathfrak v$ elements of $X$ that belong to $A_i$-equivalence classes of size larger than $1$, then $X$ has a rainbow matching---a set of $2n$ distinct elements $a_1, b_1, ldots, a_n, b_n$, such that $a_i$ is $A_i$-equivalent to $b_i$ for each $i$? Grinblat has shown that $mathfrak v(n) le 10n/3 + O(sqrt{n})$. He asks whether $mathfrak v(n) = 3n-2$ for all $nge 4$. In this paper we improve the upper bound (for all large enough $n$) to $mathfrak v(n) le 16n/5 + O(1)$.
Drisko proved that $2n-1$ matchings of size $n$ in a bipartite graph have a rainbow matching of size $n$. For general graphs it is conjectured that $2n$ matchings suffice for this purpose (and that $2n-1$ matchings suffice when $n$ is even). The know
A graph $G$ whose edges are coloured (not necessarily properly) contains a full rainbow matching if there is a matching $M$ that contains exactly one edge of each colour. We refute several conjectures on matchings in hypergraphs and full rainbow matc
Let $k>1$, and let $mathcal{F}$ be a family of $2n+k-3$ non-empty sets of edges in a bipartite graph. If the union of every $k$ members of $mathcal{F}$ contains a matching of size $n$, then there exists an $mathcal{F}$-rainbow matching of size $n$. U
There has been much research on the topic of finding a large rainbow matching (with no two edges having the same color) in a properly edge-colored graph, where a proper edge coloring is a coloring of the edge set such that no same-colored edges are i
We prove tight upper bounds on the logarithmic derivative of the independence and matching polynomials of d-regular graphs. For independent sets, this theorem is a strengthening of the results of Kahn, Galvin and Tetali, and Zhao showing that a union