ﻻ يوجد ملخص باللغة العربية
We present a study on the effect of undetected stellar companions on the derived planetary radii for the Kepler Objects of Interest (KOIs). The current production of the KOI list assumes that the each KOI is a single star. Not accounting for stellar multiplicity statistically biases the planets towards smaller radii. The bias towards smaller radii depends on the properties of the companion stars and whether the planets orbit the primary or the companion stars. Defining a planetary radius correction factor $X_R$, we find that if the KOIs are assumed to be single, then, {it on average}, the planetary radii may be underestimated by a factor of $langle X_R rangle approx 1.5$. If typical radial velocity and high resolution imaging observations are performed and no companions are detected, this factor reduces to $langle X_R rangle approx 1.2$. The correction factor $langle X_R rangle$ is dependent upon the primary star properties and ranges from $langle X_R rangle approx 1.6$ for A and F stars to $langle X_R rangle approx 1.2$ for K and M stars. For missions like K2 and TESS where the stars may be closer than the stars in the Kepler target sample, observational vetting (primary imaging) reduces the radius correction factor to $langle X_R rangle approx 1.1$. Finally, we show that if the stellar multiplicity rates are not accounted for correctly, occurrence rate calculations for Earth-sized planets may overestimate the frequency of small planets by as much as $15-20$%.
Doppler planet searches have discovered that giant planets follow orbits with a wide range of orbital eccentricities, revolutionizing theories of planet formation. The discovery of hundreds of exoplanet candidates by NASAs Kepler mission enables astr
The size distribution of exoplanets is a bimodal division into two groups: Rocky planet (<2 Earth radii) and water-rich planet (>2 Earth radii) with or without gaseous envelope.
We present precision 4.5 $mu$m Spitzer transit photometry of eight planet candidates discovered by the K2 mission: K2-52 b, K2-53 b, EPIC 205084841.01, K2-289 b, K2-174 b, K2-87 b, K2-90 b, and K2-124 b. The sample includes four sub-Neptunes and two
Context. Hot subdwarfs experienced strong mass loss on the Red Giant Branch (RGB) and are now hot and small He-burning objects. Aims. In this project we aim to perform a transit survey in all available light curves of hot subdwarfs from space-based t
We present high-resolution observations of a sample of 75 K2 targets from Campaigns 1-3 using speckle interferometry on the Southern Astrophysical Research (SOAR) telescope and adaptive optics (AO) imaging at the Keck II telescope. The median SOAR $I