ترغب بنشر مسار تعليمي؟ اضغط هنا

Faster 64-bit universal hashing using carry-less multiplications

313   0   0.0 ( 0 )
 نشر من قبل Daniel Lemire
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Intel and AMD support the Carry-less Multiplication (CLMUL) instruction set in their x64 processors. We use CLMUL to implement an almost universal 64-bit hash family (CLHASH). We compare this new family with what might be the fastest almost universal family on x64 processors (VHASH). We find that CLHASH is at least 60% faster. We also compare CLHASH with a popular hash function designed for speed (Googles CityHash). We find that CLHASH is 40% faster than CityHash on inputs larger than 64 bytes and just as fast otherwise.



قيم البحث

اقرأ أيضاً

Counting the number of ones in a binary stream is a common operation in database, information-retrieval, cryptographic and machine-learning applications. Most processors have dedicated instructions to count the number of ones in a word (e.g., popcnt on x64 processors). Maybe surprisingly, we show that a vectorized approach using SIMD instructions can be twice as fast as using the dedicated instructions on recent Intel processors. The benefits can be even greater for applications such as similarity measures (e.g., the Jaccard index) that require additional Boolean operations. Our approach has been adopted by LLVM: it is used by its popular C compiler (clang).
Despite being one of the oldest data structures in computer science, hash tables continue to be the focus of a great deal of both theoretical and empirical research. A central reason for this is that many of the fundamental properties that one desire s from a hash table are difficult to achieve simultaneously; thus many variants offering different trade-offs have been proposed. This paper introduces Iceberg hashing, a hash table that simultaneously offers the strongest known guarantees on a large number of core properties. Iceberg hashing supports constant-time operations while improving on the state of the art for space efficiency, cache efficiency, and low failure probability. Iceberg hashing is also the first hash table to support a load factor of up to $1 - o(1)$ while being stable, meaning that the position where an element is stored only ever changes when resizes occur. In fact, in the setting where keys are $Theta(log n)$ bits, the space guarantees that Iceberg hashing offers, namely that is uses at most $log binom{|U|}{n} + O(n log log n)$ bits to store $n$ items from a universe $U$, matches a lower bound by Demaine et al. that applies to any stable hash table. Iceberg hashing introduces new general-purpose techniques for some of the most basic aspects of hash-table design. Notably, our indirection-free technique for dynamic resizing, which we call waterfall addressing, and our techniques for achieving stability and very-high probability guarantees, can be applied to any hash table that makes use of the front-yard/backyard paradigm for hash table design.
Motivated by recent Linear Programming solvers, we design dynamic data structures for maintaining the inverse of an $ntimes n$ real matrix under $textit{low-rank}$ updates, with polynomially faster amortized running time. Our data structure is based on a recursive application of the Woodbury-Morrison identity for implementing $textit{cascading}$ low-rank updates, combined with recent sketching technology. Our techniques and amortized analysis of multi-level partial updates, may be of broader interest to dynamic matrix problems. This data structure leads to the fastest known LP solver for general (dense) linear programs, improving the running time of the recent algorithms of (Cohen et al.19, Lee et al.19, Brand20) from $O^*(n^{2+ max{frac{1}{6}, omega-2, frac{1-alpha}{2}}})$ to $O^*(n^{2+max{frac{1}{18}, omega-2, frac{1-alpha}{2}}})$, where $omega$ and $alpha$ are the fast matrix multiplication exponent and its dual. Hence, under the common belief that $omega approx 2$ and $alpha approx 1$, our LP solver runs in $O^*(n^{2.055})$ time instead of $O^*(n^{2.16})$.
72 - Yadan Luo , Zi Huang , Yang Li 2018
Hashing techniques are in great demand for a wide range of real-world applications such as image retrieval and network compression. Nevertheless, existing approaches could hardly guarantee a satisfactory performance with the extremely low-bit (e.g., 4-bit) hash codes due to the severe information loss and the shrink of the discrete solution space. In this paper, we propose a novel textit{Collaborative Learning} strategy that is tailored for generating high-quality low-bit hash codes. The core idea is to jointly distill bit-specific and informative representations for a group of pre-defined code lengths. The learning of short hash codes among the group can benefit from the manifold shared with other long codes, where multiple views from different hash codes provide the supplementary guidance and regularization, making the convergence faster and more stable. To achieve that, an asymmetric hashing framework with two variants of multi-head embedding structures is derived, termed as Multi-head Asymmetric Hashing (MAH), leading to great efficiency of training and querying. Extensive experiments on three benchmark datasets have been conducted to verify the superiority of the proposed MAH, and have shown that the 8-bit hash codes generated by MAH achieve $94.3%$ of the MAP (Mean Average Precision (MAP)) score on the CIFAR-10 dataset, which significantly surpasses the performance of the 48-bit codes by the state-of-the-arts in image retrieval tasks.
250 - Owen Kaser , Daniel Lemire 2012
We present fast strongly universal string hashing families: they can process data at a rate of 0.2 CPU cycle per byte. Maybe surprisingly, we find that these families---though they require a large buffer of random numbers---are often faster than popu lar hash functions with weaker theoretical guarantees. Moreover, conventional wisdom is that hash functions with fewer multiplications are faster. Yet we find that they may fail to be faster due to operation pipelining. We present experimental results on several processors including low-powered processors. Our tests include hash functions designed for processors with the Carry-Less Multiplication (CLMUL) instruction set. We also prove, using accessible proofs, the strong universality of our families.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا