ترغب بنشر مسار تعليمي؟ اضغط هنا

High-spin structures of $^{77,79,81,83}$As isotopes

146   0   0.0 ( 0 )
 نشر من قبل Praveen Chandra Srivastava Dr.
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In the present work we report comprehensive set of shell model calculations for arsenic isotopes. We performed shell model calculations with two recent effective interactions JUN45 and jj44b. The overall results for the energy levels and magnetic moments are in rather good agreement with the available experimental data. We have also reported competition of proton- and neutron-pair breakings analysis to identify which nucleon pairs are broken to obtain the total angular momentum of the calculated states. Further theoretical development is needed by enlarging model space by including $pi 0f_{7/2}$ and $ u 1d_{5/2}$ orbitals.



قيم البحث

اقرأ أيضاً

The basis space in the triaxial projected shell model (TPSM) approach is generalized for odd-odd nuclei to include two-neutron and two-proton configurations on the basic one-neutron coupled to one-proton quasiparticle state. The generalization allows to investigate odd-odd nuclei beyond the band crossing region and as a first application of this development, high-spin band structures recently observed in odd-odd $^{194-200}$Tl isotopes are investigated. In some of these isotopes, the doublet band structures observed after the band crossing have been conjectured to arise from the spontaneous breaking of the chiral symmetry. The driving configuration of the chiral symmetry in these odd-odd isotopes is one-proton and three-neutrons rather than the basic one-proton and one-neutron as already observed in many other nuclei. It is demonstrated using the TPSM approach that energy differences of the doublet bands in $^{194}$Tl and $^{198}$Tl are, indeed, small. However, the differences in the calculated transition probabilities are somewhat larger than what is expected in the chiral symmetry limit. Experimental data on the transition probabilities is needed to shed light on the chiral nature of the doublet bands.
In the present work recently available experimental data for high-spin states of four nuclei, $^{124}_{ 52}$Te, $^{125}_{ 52}$Te, $^{126}_{ 52}$Te, and $^{127}_{ 52}$Te have been interpreted using state-of-the-art shell model calculations. The calcul ations have been performed in the $50-82$ valence shell composed of $1g_{7/2}$, $2d_{5/2}$, $1h_{11/2}$, $3s_{1/2}$, and $2d_{3/2}$ orbitals. We have compared our results with the available experimental data for excitation energies and transition probabilities, including high-spin states. The results are in reasonable agreement with the available experimental data. The wave functions, particularly, the specific proton and neutron configurations which are involved to generate the angular momentum along the yrast lines are discussed. We have also estimated overall contribution of three-body forces in the energy level shifting. Finally, results with modified effective interaction are also reported.
103 - N. Furutachi , M. kimura , A. Dote 2007
Cluster structure of 16O,18O and 20O is investigated by the antisymmettrized molecular dynamics (AMD) plus generator coordinate method (GCM). We have found the K^{pi}=0$_2^+$ and 0$_1^-$ rotational bands of 18O that have the prominent 14C+alpha clust er structure. Clustering systematics becomes richer in 20O. We suggest the K^{pi}=0$_2^+$ band that is the mixture of the 12C+alpha+4n and 14C+6He cluster structures, and the K^{pi}=0$_1^-$ band that has the 14C+6He cluster structure. The K^{pi}=0$_3^+$ and 0$_2^-$ bands that have the prominent 16C+alpha cluster structure are also found.
Odd-odd 136Cs nuclei have been produced in the 18O + 208Pb and 12C + 238U fusion-fission reactions and their gamma rays studied with the Euroball array. The high-spin level scheme has been built up to ~ 4.7 MeV excitation energy and spin I ~ 16 hbar from the triple gamma-ray coincidence data. The configurations of the three structures observed above ~ 2 MeV excitation energy are first discussed by analogy with the proton excitations identified in the semi-magic 137Cs nucleus, which involve the three high-j orbits lying above the Z=50 gap, pi g_{7/2}, pi d_{5/2} and pi h_{11/2}. This is confirmed by the results of shell-model calculations performed in this work.
95 - P.C. Srivastava 2015
In the present work, we have interpreted recently available experimental data for high-spin states of the near-spherical nuclei $^{91,92}$Zr, using the shell-model calculations within the full $f_{5/2}$, $p_{3/2}$, $p_{1/2}$, $g_{9/2}$ model space fo r protons and valence neutrons in $g_{9/2}$, $g_{7/2}$, $d_{5/2}$ orbits. We have employed a truncation for the neutrons due to huge matrix dimensions, by allowing one neutron excitation from $g_{9/2}$ orbital to $d_{5/2}$ and $g_{7/2}$ orbitals. Results are in good agreement with the available experimental data. Thus, theoretically, we have identified the structure of many high-spin states, which were tentatively assigned in the recent experimental work. The $^{91}$Zr $21/2^+$ isomer lies at low-energy region due to fully aligned spins of two $g_{9/2}$ protons and one $d_{5/2}$ neutron.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا