ترغب بنشر مسار تعليمي؟ اضغط هنا

Green power grids: how energy from renewable sources affects network and markets

212   0   0.0 ( 0 )
 نشر من قبل Antonio Scala
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The increasing attention to environmental issues is forcing the implementation of novel energy models based on renewable sources, fundamentally changing the configuration of energy management and introducing new criticalities that are only partly understood. In particular, renewable energies introduce fluctuations causing an increased request of conventional energy sources oriented to balance energy requests on short notices. In order to develop an effective usage of low-carbon sources, such fluctuations must be understood and tamed. In this paper we present a microscopic model for the description and the forecast of short time fluctuations related to renewable sources and to their effects on the electricity market. To account for the inter-dependencies among the energy market and the physical power dispatch network, we use a statistical mechanics approach to sample stochastic perturbations on the power system and an agent based approach for the prediction of the market players behavior. Our model is a data-driven; it builds on one day ahead real market transactions to train agents behaviour and allows to infer the market share of different energy sources. We benchmark our approach on the Italian market finding a good accordance with real data.



قيم البحث

اقرأ أيضاً

The Vietnamese Power system is expected to expand considerably in upcoming decades. However, pathways towards higher shares of renewables ought to be investigated. In this work, we investigate a highly renewable Vietnamese power system by jointly opt imising the expansion of renewable generation facilities and the transmission grid. We show that in the cost-optimal case, highest amounts of wind capacities are installed in southern Vietnam and solar photovoltaics (PV) in central Vietnam. In addition, we show that transmission has the potential to reduce levelised cost of electricity by approximately 10%.
177 - S.Arianos , E.Bompard , A.Carbone 2009
Power grids exhibit patterns of reaction to outages similar to complex networks. Blackout sequences follow power laws, as complex systems operating near a critical point. Here, the tolerance of electric power grids to both accidental and malicious ou tages is analyzed in the framework of complex network theory. In particular, the quantity known as efficiency is modified by introducing a new concept of distance between nodes. As a result, a new parameter called net-ability is proposed to evaluate the performance of power grids. A comparison between efficiency and net-ability is provided by estimating the vulnerability of sample networks, in terms of both the metrics.
The understanding of cascading failures in complex systems has been hindered by the lack of realistic large-scale modeling and analysis that can account for variable system conditions. Here, using the North American power grid, we identify, quantify, and analyze the set of network components that are vulnerable to cascading failures under any out of multiple conditions. We show that the vulnerable set consists of a small but topologically central portion of the network and that large cascades are disproportionately more likely to be triggered by initial failures close to this set. These results elucidate aspects of the origins and causes of cascading failures relevant for grid design and operation, and demonstrate vulnerability analysis methods that are applicable to a wider class of cascade-prone networks.
The power from wind and solar exhibits a nonlinear flickering variability, which typically occurs at time scales of a few seconds. We show that high-frequency monitoring of such renewable powers enables us to detect a transition, controlled by the fi eld size, where the output power qualitatively changes its behaviour from a flickering type to a diffusive stochastic behaviour. We find that the intermittency and strong non-Gaussian behavior in cumulative power of the total field, even for a country-wide installation still survives for both renewable sources. To overcome the short time intermittency, we introduce a time-delayed feedback method for power output of wind farm and solar field that can change further the underlying stochastic process and suppress their strong non- gaussian fluctuations.
A fully renewable European power system comes with a variety of problems. Most of them are linked to the intermittent nature of renewable generation from the sources of wind and photovoltaics. A possible solution to balance European generation and co nsumption are European hydro power with its seasonal and North African Concentrated Solar Power with its daily storage characteristics. In this paper, we investigate the interplay of hydro and CSP imports in a highly renewable European power system. We use a large weather database and historical load data to model the interplay of renewable generation, consumption and imports for Europe. We introduce and compare different hydro usage strategies and show that hydro and CSP imports must serve different purposes to maximise benefits for the total system. CSP imports should be used to cover daily deficits, whereas hydro power can cover seasonal imbalances. If hydro is used in a Hydro First strategy, only around one quarter of North African Solar Power could be exported to Europe, whereas this number increases to around 60%, if a cooperative hydro strategy is used.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا