ﻻ يوجد ملخص باللغة العربية
Bulk and decay properties, including deformation energy curves, charge mean square radii, Gamow-Teller (GT) strength distributions, and beta-decay half-lives, are studied in neutron-deficient even-even and odd-A Hg and Pt isotopes. The nuclear structure is described microscopically from deformed quasiparticle random-phase approximation calculations with residual interactions in both particle-hole and particle-particle channels, performed on top of a self-consistent deformed quasiparticle Skyrme Hartree-Fock basis. The observed sensitivity of the, not yet measured, GT strength distributions to deformation is proposed as an additional complementary signature of the nuclear shape. The $beta$-decay half-lives resulting from these distributions are compared to experiment to demonstrate the ability of the method.
We intend to provide a consistent description of the even-even Hg isotopes, 172-200Hg, using the interacting boson model including configuration mixing. We pay special attention to the description of the shape of the nuclei and to its connection with the shape coexistence phenomenon.
A unitary description for wobbling motion in even-even and even-odd nuclei is presented. In both cases compact formulas for wobbling frequencies are derived. The accuracy of the harmonic approximation is studied for the yrast as well as for the excit
Background: The Po, Pb, Hg, and Pt region is known for the presence of coexisting structures that correspond to different particle-hole configurations in the Shell Model language or equivalently to nuclear shapes with different deformation. Purpose
We discuss the role of pairing anti-halo effect in the observed odd-even staggering in reaction cross sections for $^{30,31,32}$Ne and $^{36,37,38}$Mg isotopes by taking into account the ground state deformation of these nuclei. To this end, we const
We have performed shell-model calculations of binding energies of nuclei around $^{132}$Sn. The main aim of our study has been to find out if the behavior of odd-even staggering across N=82 is explainable in terms of the shell model. In our calculati