ﻻ يوجد ملخص باللغة العربية
In systems of ultracold atoms, pairwise interactions can be resonantly enhanced by a new mechanism which does not rely upon a magnetic Feshbach resonance. In this mechanism, interactions are controlled by tuning the frequency of an oscillating parallel component of the magnetic field close to the transition frequency between the scattering atoms and a two-atom bound state. The real part of the resulting s-wave scattering length $a$ is resonantly enhanced when the oscillation frequency is close to the transition frequency. The resonance parameters can be controlled by varying the amplitude of the oscillating field. The amplitude also controls the imaginary part of $a$ which arises because the oscillating field converts atom pairs into molecules. The real part of $a$ can be made much larger than the background scattering length without introducing catastrophic atom losses from the imaginary part. For the case of a shallow bound state in the scattering channel, the dimensionless resonance parameters are universal functions of the dimensionless oscillation amplitude.
In systems of ultracold atoms, pairwise interactions are resonantly enhanced by the application of an oscillating magnetic field that is parallel to the spin-quantization axis of the atoms. The resonance occurs when the frequency of the applied field
We dress atoms with multiple-radiofrequency fields and investigate the spectrum of transitions driven by an additional probe field. A complete theoretical description of this rich spectrum is presented, in which we find allowed transitions and determ
We study superconductivity in an ultracold Bose-Fermi mixture loaded into a square optical lattice subjected to a staggered flux. While the bosons form a superfluid at very low temperature and weak interaction, the interacting fermions experience an
The Hubbard model underlies our understanding of strongly correlated materials. While its standard form only comprises interaction between particles at the same lattice site, its extension to encompass long-range interaction, which activates terms ac
We combine theory and experiment to investigate five-body recombination in an ultracold gas of atomic cesium at negative scattering length. A refined theoretical model, in combination with extensive laboratory tunability of the interatomic interactio