ﻻ يوجد ملخص باللغة العربية
A weak formulation for the so-called semilinear strongly damped wave equation with constraint is introduced and a corresponding notion of solution is defined. The main idea in this approach consists in the use of duality techniques in Sobolev-Bochner spaces, aimed at providing a suitable relaxation of the constraint term. A global in time existence result is proved under the natural condition that the initial data have finite physical energy.
A strongly damped wave equation including the displacement depending nonlinear damping term and nonlinear interaction function is considered. The main aim of the note is to show that under the standard dissipativity restrictions on the nonlinearities
We present a new method of investigating the so-called quasi-linear strongly damped wave equations $$ partial_t^2u-gammapartial_tDelta_x u-Delta_x u+f(u)= abla_xcdot phi( abla_x u)+g $$ in bounded 3D domains. This method allows us to establish the e
We consider the damped wave equation on a manifold with imperfect geometric control. We show the sub-exponential energy decay estimate in cite{Chr-NC-erratum} is optimal in the case of one hyperbolic periodic geodesic. We show if the equation is over
This paper is devoted to the lifespan of solutions to a damped fourth-order wave equation with logarithmic nonlinearity $$u_{tt}+Delta^2u-Delta u-omegaDelta u_t+alpha(t)u_t=|u|^{p-2}uln|u|.$$ Finite time blow-up criteria for solutions at both lower a
We study the wave equation on infinite graphs. On one hand, in contrast to the wave equation on manifolds, we construct an example for the non-uniqueness for the Cauchy problem of the wave equation on graphs. On the other hand, we obtain a sharp uniq