ترغب بنشر مسار تعليمي؟ اضغط هنا

The computer BESK and an early attempt to simulate galactic dynamics

126   0   0.0 ( 0 )
 نشر من قبل Kambiz Fathi
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Per Olof Lindblad




اسأل ChatGPT حول البحث

The first N-body simulation of interacting galaxies, even producing spiral arms, was performed by Erik Holmberg in Lund (1941), not with a numerical computer, but by his arrangement of movable light-bulbs and photocells to measure the luminosity at each bulb and thereby estimate the gravitational force. A decade later, and with the arrival of the first programable computers, computations of galactic dynamics were performed, which were later transferred into a N-body simulation movie. I present here the background details for this work with a description of the important elements to note in the movie which may be retrieved at http://ttt.astro.su.se/~po .



قيم البحث

اقرأ أيضاً

The European Space Agencys Planck satellite was launched on 14 May 2009, and has been surveying the sky stably and continuously since 13 August 2009. Its performance is well in line with expectations, and it will continue to gather scientific data un til the end of its cryogenic lifetime. We give an overview of the history of Planck in its first year of operations, and describe some of the key performance aspects of the satellite. This paper is part of a package submitted in conjunction with Plancks Early Release Compact Source Catalogue, the first data product based on Planck to be released publicly. The package describes the scientific performance of the Planck payload, and presents results on a variety of astrophysical topics related to the sources included in the Catalogue, as well as selected topics on diffuse emission.
We propose a new mission called Space Project for Astrophysical and Cosmological Exploration (SPACE) as part on the ESA long term planning Voyage 2050 programme. SPACE will study galaxy evolution at the earliest times, with the key goals of charting the formation of the heavy elements, measuring the evolution of the galaxy luminosity function, tracing the build-up of stellar mass in galaxies over cosmic time, and finding the first super-massive black holes (SMBHs) to form. The mission will exploit a unique region of the parameter space, between the narrow ultra-deep surveys with HST and JWST, and shallow wide-field surveys such as Roman Space Telescope and EUCLID, and should yield by far the largest sample of any current or planned mission of very high redshift galaxies at z > 10 which are sufficiently bright for detailed follow-up spectroscopy. Crucially, we propose a wide-field spectroscopic near-IR + mid-IR capability which will greatly enhance our understanding of the first galaxies by detecting and identifying a statistical sample of the first galaxies and the first SMBH, and to chart the metal enrichment history of galaxies in the early Universe - potentially finding signatures of the very first stars to form from metal-free primordial gas. The wide-field and wavelength range of SPACE will also provide us a unique opportunity to study star formation by performing a wide survey of the Milky Way in the near-IR + mid-IR. This science project can be enabled either by a stand-alone ESA-led M mission or by an instrument for an L mission (with ESA and/or NASA, JAXA and other international space agencies) with a wide-field (sub-)millimetre capability at wavelength > 500 microns.
Large multi-object spectroscopic surveys require automated algorithms to optimise their observing strategy. One of the most ambitious upcoming spectroscopic surveys is the 4MOST survey. The 4MOST survey facility is a fibre-fed spectroscopic instrumen t on the VISTA telescope with a large enough field of view to survey a large fraction of the southern sky within a few years. Several Galactic and extragalactic surveys will be carried out simultaneously, so the combined target density will strongly vary. In this paper, we describe a new tiling algorithm that can naturally deal with the large target density variations on the sky and which automatically handles the different exposure times of targets. The tiling pattern is modelled as a marked point process, which is characterised by a probability density that integrates the requirements imposed by the 4MOST survey. The optimal tilling pattern with respect to the defined model is estimated by the tiles configuration that maximises the proposed probability density. In order to achieve this maximisation a simulated annealing algorithm is implemented. The algorithm automatically finds an optimal tiling pattern and assigns a tentative sky brightness condition and exposure time for each tile, while minimising the total execution time that is needed to observe the list of targets in the combined input catalogue of all surveys. Hence, the algorithm maximises the long-term observing efficiency and provides an optimal tiling solution for the survey. While designed for the 4MOST survey, the algorithm is flexible and can with simple modifications be applied to any other multi-object spectroscopic survey.
The observing strategy of a galaxy survey influences the degree to which its resulting data can be used to accomplish any science goal. LSST is thus seeking metrics of observing strategies for multiple science cases in order to optimally choose a cad ence. Photometric redshifts are essential for many extragalactic science applications of LSSTs data, including but not limited to cosmology, but there are few metrics available, and they are not straightforwardly integrated with metrics of other cadence-dependent quantities that may influence any given use case. We propose a metric for observing strategy optimization based on the potentially recoverable mutual information about redshift from a photometric sample under the constraints of a realistic observing strategy. We demonstrate a tractable estimation of a variational lower bound of this mutual information implemented in a public code using conditional normalizing flows. By comparing the recoverable redshift information across observing strategies, we can distinguish between those that preclude robust redshift constraints and those whose data will preserve more redshift information, to be generically utilized in a downstream analysis. We recommend the use of this versatile metric to observing strategy optimization for redshift-dependent extragalactic use cases, including but not limited to cosmology, as well as any other science applications for which photometry may be modeled from true parameter values beyond redshift.
Interest in all-optical spin switching (AOS) is growing rapidly. The recent discovery of AOS in Mn$_2$RuGa provides a much needed clean case of crystalline ferrimagnets for theoretical simulations. Here, we attempt to simulate it using the state-of-t he-art first-principles method combined with the Heisenberg exchange model. We first compute the spin moments at two inequivalent manganese sites and then feed them into our model Hamiltonian. We employ an ultrafast laser pulse to switch the spins. We find that there is a similar optimal laser field amplitude to switch spins. However, we find that the exchange interaction has a significant effect on the system switchability. Weakening the exchange interaction could make the system unswitchable. This provides a crucial insight into the switching mechanism in ferrimagnets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا