ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiple resonant manipulation of qubits by train of pulses

177   0   0.0 ( 0 )
 نشر من قبل Gor Abovyan
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a systematic approach based on Bloch vectors treatment and the Magnus quantum electrodynamical formalism to study qubit manipulation by a train of pulses. These investigations include one of the basic processes involved in quantum computation. The concrete calculations are performed for tunneling quantum dynamics, multiple resonance and off-resonance excitations of qubit driven by Gaussian pulses. In this way, the populations of qubit states due to multiple resonant interactions are investigated for various operational regimes including: single-pulse excitation, two-pulse excitation with phase shift between pulse envelopes being controlling parameter and for excitation with sequential pulses. In the last case, we demonstrate the formation of quasienergetic states and quasienergies of qubit driven by train of identical pulses. In this case the transition probability of qubit exhibits aperiodic oscillations, but also becomes periodically regular for definite values of the quasienergy.



قيم البحث

اقرأ أيضاً

An important desired ingredient of superconducting quantum circuits is a readout scheme whose complexity does not increase with the number of qubits involved in the measurement. Here, we present a readout scheme employing a single microwave line, whi ch enables simultaneous readout of multiple qubits. Consequently, scaling up superconducting qubit circuits is no longer limited by the readout apparatus. Parallel readout of 6 flux qubits using a frequency division multiplexing technique is demonstrated, as well as simultaneous manipulation and time resolved measurement of 3 qubits. We discuss how this technique can be scaled up to read out hundreds of qubits on a chip.
85 - S. Asaad , C. Dickel , S. Poletto 2015
A critical ingredient for realizing large-scale quantum information processors will be the ability to make economical use of qubit control hardware. We demonstrate an extensible strategy for reusing control hardware on same-frequency transmon qubits in a circuit QED chip with surface-code-compatible connectivity. A vector switch matrix enables selective broadcasting of input pulses to multiple transmons with individual tailoring of pulse quadratures for each, as required to minimize the effects of leakage on weakly anharmonic qubits. Using randomized benchmarking, we compare multiple broadcasting strategies that each pass the surface-code error threshold for single-qubit gates. In particular, we introduce a selective-broadcasting control strategy using five pulse primitives, which allows independent, simultaneous Clifford gates on arbitrary numbers of qubits.
Dynamical error suppression techniques are commonly used to improve coherence in quantum systems. They reduce dephasing errors by applying control pulses designed to reverse erroneous coherent evolution driven by environmental noise. However, such me thods cannot correct for irreversible processes such as energy relaxation. In this work, we investigate a complementary, stochastic approach to reducing errors: instead of deterministically reversing the unwanted qubit evolution, we use control pulses to shape the noise environment dynamically. In the context of superconducting qubits, we implement a pumping sequence to reduce the number of unpaired electrons (quasiparticles) in close proximity to the device. We report a 70% reduction in the quasiparticle density, resulting in a threefold enhancement in qubit relaxation times, and a comparable reduction in coherence variability.
Quantum annealing (QA) is a heuristic algorithm for finding low-energy configurations of a system, with applications in optimization, machine learning, and quantum simulation. Up to now, all implementations of QA have been limited to qubits coupled v ia a single degree of freedom. This gives rise to a stoquastic Hamiltonian that has no sign problem in quantum Monte Carlo (QMC) simulations. In this paper, we report implementation and measurements of two superconducting flux qubits coupled via two canonically conjugate degrees of freedom (charge and flux) to achieve a nonstoquastic Hamiltonian. Such coupling can enhance performance of QA processors, extend the range of quantum simulations. We perform microwave spectroscopy to extract circuit parameters and show that the charge coupling manifests itself as a YY interaction in the computational basis. We observe destructive interference in quantum coherent oscillations between the computational basis states of the two-qubit system. Finally, we show that the extracted Hamiltonian is nonstoquastic over a wide range of parameters.
We characterize a superconducting qubit before and after embedding it along with its package in an absorptive medium. We observe a drastic improvement in the effective qubit temperature and over a tenfold improvement in the relaxation time up to 5.7 $mu$s. Our results suggest the presence of external radiation inside the cryogenic apparatus can be a limiting factor for both qubit initialization and coherence. We infer from simple calculations that relaxation is not limited by thermal photons in the sample prior to embedding, but by dissipation arising from quasiparticle generation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا