ﻻ يوجد ملخص باللغة العربية
Energy minimization has been an intensely studied core problem in computer vision. With growing image sizes (2D and 3D), it is now highly desirable to run energy minimization algorithms in parallel. But many existing algorithms, in particular, some efficient combinatorial algorithms, are difficult to par-allelize. By exploiting results from convex and submodular theory, we reformulate the quadratic energy minimization problem as a total variation denoising problem, which, when viewed geometrically, enables the use of projection and reflection based convex methods. The resulting min-cut algorithm (and code) is conceptually very simple, and solves a sequence of TV denoising problems. We perform an extensive empirical evaluation comparing state-of-the-art combinatorial algorithms and convex optimization techniques. On small problems the iterative convex methods match the combinatorial max-flow algorithms, while on larger problems they offer other flexibility and important gains: (a) their memory footprint is small; (b) their straightforward parallelizability fits multi-core platforms; (c) they can easily be warm-started; and (d) they quickly reach approximately good solutions, thereby enabling faster inexact solutions. A key consequence of our approach based on submodularity and convexity is that it is allows to combine any arbitrary combinatorial or convex methods as subroutines, which allows one to obtain hybrid combinatorial and convex optimization algorithms that benefit from the strengths of both.
We propose two novel conditional gradient-based methods for solving structured stochastic convex optimization problems with a large number of linear constraints. Instances of this template naturally arise from SDP-relaxations of combinatorial problem
Non-convex sparse minimization (NSM), or $ell_0$-constrained minimization of convex loss functions, is an important optimization problem that has many machine learning applications. NSM is generally NP-hard, and so to exactly solve NSM is almost impo
Recent work has shown how to embed differentiable optimization problems (that is, problems whose solutions can be backpropagated through) as layers within deep learning architectures. This method provides a useful inductive bias for certain problems,
We propose a new majorization-minimization (MM) method for non-smooth and non-convex programs, which is general enough to include the existing MM methods. Besides the local majorization condition, we only require that the difference between the direc
This paper is a follow up to the previous authors paper on convex optimization. In that paper we began the process of adjusting greedy-type algorithms from nonlinear approximation for finding sparse solutions of convex optimization problems. We modif