ترغب بنشر مسار تعليمي؟ اضغط هنا

Catching the Bound States in the Continuum of a Phantom Atom in Graphene

283   0   0.0 ( 0 )
 نشر من قبل Antonio Seridonio
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore theoretically the formation of bound states in the continuum (BICs) in graphene hosting two collinear adatoms situated at different sides of the sheet and at the center of the hexagonal cell, where a phantom atom of a fictitious lattice emulates the six carbons of the cell. We verify that in this configuration the local density of states (LDOS) near the Dirac points exhibits two characteristic features: i) the cubic dependence on energy instead of the linear one for graphene as found in New J. Phys. 16, 013045 (2014) and ii) formation of BICs as aftermath of a Fano destructive interference assisted by the Coulomb correlations in the adatoms. For the geometry where adatoms are collinear to carbon atoms, we report absence of BICs.



قيم البحث

اقرأ أيضاً

We show that lattices with higher-order topology can support corner-localized bound states in the continuum (BICs). We propose a method for the direct identification of BICs in condensed matter settings and use it to demonstrate the existence of BICs in a concrete lattice model. Although the onset for these states is given by corner-induced filling anomalies in certain topological crystalline phases, additional symmetries are required to protect the BICs from hybridizing with their degenerate bulk states. We demonstrate the protection mechanism for BICs in this model and show how breaking this mechanism transforms the BICs into higher-order topological resonances. Our work shows that topological states arising from the bulk-boundary correspondence in topological phases are more robust than previously expected, expanding the search space for crystalline topological phases to include those with boundary-localized BICs or resonances.
149 - Mengdi Zhao , Kejie Fang 2019
Bound states in the continuum (BICs), an emerging type of long-lived resonances different from the cavity-based ones, have been explored in several classical systems, including photonic crystals and surface acoustic waves. Here, we reveal symmetry-pr otected mechanical BICs in the structure of slab-on-substrate optomechanical crystals. Using a group theory approach, we identified all the mechanical BICs at the $Gamma$ point in optomechanical crystals with $C_{4v}$ and $C_{6v}$ symmetries as examples, and analyzed their coupling with the co-localized optical BICs and guided resonances due to both moving boundary and photo-elastic effects. We verified the theoretical analysis with numerical simulations of specific optomechanical crystals which support substantial optomechanical interactions between the mechanical BICs and optical resonances. Due to the unique features of high-$Q$, large-size mechanical BICs and substrate-enabled thermal dissipation, this architecture of slab-on-substrate optomechanical crystals might be useful for exploring macroscopic quantum mechanical physics and enabling new applications such as high-throughput sensing and free-space beam steering.
We study, both theoretically and experimentally, tunable metasurfaces supporting sharp Fano-resonances inspired by optical bound states in the continuum. We explore the use of arsenic trisulfide (a photosensitive chalcogenide glass) having optical pr operties which can be finely tuned by light absorption at the post-fabrication stage. We select the resonant wavelength of the metasurface corresponding to the energy below the arsenic trisulfide bandgap, and experimentally control the resonance spectral position via exposure to the light of energies above the bandgap.
Nonlinear nanostructured surfaces provide a paradigm shift in nonlinear optics with new ways to control and manipulate frequency conversion processes at the nanoscale, also offering novel opportunities for applications in photonics, chemistry, materi al science, and biosensing. Here, we develop a general approach to employ sharp resonances in metasurfaces originated from the physics of bound states in the continuum for both engineering and enhancing the nonlinear response. We study experimentally the third-harmonic generation from metasurfaces composed of symmetry-broken silicon meta-atoms and reveal that the harmonic generation intensity depends critically on the asymmetry parameter. We employ the concept of the critical coupling of light to the metasurface resonances to uncover the effect of radiative and nonradiative losses on the nonlinear conversion efficiency.
The recently observed superconductivity in twisted bilayer graphene emerges from insulating states believed to arise from electronic correlations. While there have been many proposals to explain the insulating behaviour, the commensurability at which these states appear suggests that they are Mott insulators. Here we focus on the insulating states with $pm 2$ electrons or holes with respect to the charge neutrality point. We show that the theoretical expectations for the Mott insulating states are not compatible with the experimentally observed dependence on temperature and magnetic field if, as frequently assumed, only the correlations between electrons on the same site are included. We argue that the inclusion of non-local (inter-site) correlations in the treatment of the Hubbard model can bring the predictions for the magnetic and temperature dependencies of the Mott transition to an agreement with experiments and have consequences for the critical interactions, the size of the gap, and possible pseudogap physics. The importance of the inter-site correlations to explain the experimental observations indicates that the observed insulating gap is not the one between the Hubbard bands and that antiferromagnetic-like correlations play a key role in the Mott transition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا