Thermodynamics of quantum systems under dynamical control


الملخص بالإنكليزية

In this review the debated rapport between thermodynamics and quantum mechanics is addressed in the framework of the theory of periodically-driven/controlled quantum-thermodynamic machines. The basic model studied here is that of a two-level system (TLS), whose energy is periodically modulated while the system is coupled to thermal baths. When the modulation interval is short compared to the bath memory time, the system-bath correlations are affected, thereby causing cooling or heating of the TLS, depending on the interval. In steady state, a periodically-modulated TLS coupled to two distinct baths constitutes the simplest quantum heat machine (QHM) that may operate as either an engine or a refrigerator, depending on the modulation rate. We find their efficiency and power-output bounds and the conditions for attaining these bounds. An extension of this model to multilevel systems shows that the QHM power output can be boosted by the multilevel degeneracy. These results are used to scrutinize basic thermodynamic principles: (i) Externally-driven/modulated QHMs may attain the Carnot efficiency bound, but when the driving is done by a quantum device (piston), the efficiency strongly depends on its initial quantum state. Such dependence has been unknown thus far. (ii) The refrigeration rate effected by QHMs does not vanish as the temperature approaches absolute zero for certain quantized baths, e.g., magnons, thous challenging Nernsts unattainability principle. (iii) System-bath correlations allow more work extraction under periodic control than that expected from the Szilard-Landauer principle, provided the period is in the non-Markovian domain. Thus, dynamically-controlled QHMs may benefit from hitherto unexploited thermodynamic resources.

تحميل البحث