ترغب بنشر مسار تعليمي؟ اضغط هنا

P-MaNGA: Full spectral fitting and stellar population maps from prototype observations

196   0   0.0 ( 0 )
 نشر من قبل David Wilkinson
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

MaNGA (Mapping Nearby Galaxies at Apache Point Observatory) is a 6-year SDSS-IV survey that will obtain resolved spectroscopy from 3600 $AA$ to 10300 $AA$ for a representative sample of over 10,000 nearby galaxies. In this paper, we derive spatially resolved stellar population properties and radial gradients by performing full spectral fitting of observed galaxy spectra from P-MaNGA, a prototype of the MaNGA instrument. These data include spectra for eighteen galaxies, covering a large range of morphological type. We derive age, metallicity, dust and stellar mass maps, and their radial gradients, using high spectral-resolution stellar population models, and assess the impact of varying the stellar library input to the models. We introduce a method to determine dust extinction which is able to give smooth stellar mass maps even in cases of high and spatially non-uniform dust attenuation. With the spectral fitting we produce detailed maps of stellar population properties which allow us to identify galactic features among this diverse sample such as spiral structure, smooth radial profiles with little azimuthal structure in spheroidal galaxies, and spatially distinct galaxy sub-components. In agreement with the literature, we find the gradients for galaxies identified as early-type to be on average flat in age, and negative (- 0.15 dex / R$_e$ ) in metallicity, whereas the gradients for late-type galaxies are on average negative in age (- 0.39 dex / R$_e$ ) and flat in metallicity. We demonstrate how different levels of data quality change the precision with which radial gradients can be measured. We show how this analysis, extended to the large numbers of MaNGA galaxies, will have the potential to shed light on galaxy structure and evolution.



قيم البحث

اقرأ أيضاً

MaNGA (Mapping Nearby Galaxies at Apache Point Observatory) is a SDSS-IV survey that will obtain spatially resolved spectroscopy from 3600 AA to 10300 AA for a representative sample of over 10000 nearby galaxies. In this paper we present the analysis of nebular emission line properties in 14 galaxies obtained with P-MaNGA, a prototype of the MaNGA instrument. Using spatially resolved diagnostic diagrams we find extended star formation in galaxies that are centrally dominated by Seyfert/LINER-like emission, which illustrates that galaxy characterisations based on single fibre spectra are necessarily incomplete. We observe extended LINER-like emission (up to $rm 1 R_{e}$) in three galaxies. We make use of the $rm EW(H alpha)$ to argue that the observed emission is consistent with ionisation from hot evolved stars. We derive stellar population indices and demonstrate a clear correlation between $rm D_n(4000)$ and $rm EW(H delta_A)$ and the position in the ionisation diagnostic diagram: resolved galactic regions which are ionised by a Seyfert/LINER-like radiation field are also devoid of recent star formation and host older and/or more metal rich stellar populations. We also detect extraplanar LINER-like emission in two highly inclined galaxies, and identify it with diffuse ionised gas. We investigate spatially resolved metallicities and find a positive correlation between metallicity and star formation rate (SFR) surface density. We study the relation between N/O vs O/H on resolved scales. We find that, at given N/O, regions within individual galaxies are spread towards lower metallicities, deviating from the sequence defined by galactic central regions as traced by Sloan $3$ fibre spectra. We suggest that the observed dispersion can be a tracer for gas flows in galaxies: infalls of pristine gas and/or the effect of a galactic fountain.
This is the third paper of a series where we study the stellar population gradients (SP; ages, metallicities, $alpha$-element abundance ratios and stellar initial mass functions) of early type galaxies (ETGs) at $zle 0.08$ from the MaNGA-DR15 survey. In this work we focus on the S0 population and quantify how the SP varies across the population as well as with galactocentric distance. We do this by measuring Lick indices and comparing them to stellar population synthesis models. This requires spectra with high signal-to-noise which we achieve by stacking in bins of luminosity (L$_r$) and central velocity dispersion ($sigma_0$). We find that: 1) There is a bimodality in the S0 population: S0s more massive than $3times 10^{10}M_odot$ show stronger velocity dispersion and age gradients (age and $sigma_r$ decrease outwards) but little or no metallicity gradient, while the less massive ones present relatively flat age and velocity dispersion profiles, but a significant metallicity gradient (i.e. [M/H] decreases outwards). Above $2times10^{11}M_odot$ the number of S0s drops sharply. These two mass scales are also where global scaling relations of ETGs change slope. 2) S0s have steeper velocity dispersion profiles than fast rotating elliptical galaxies (E-FRs) of the same luminosity and velocity dispersion. The kinematic profiles and stellar population gradients of E-FRs are both more similar to those of slow rotating ellipticals (E-SRs) than to S0s, suggesting that E-FRs are not simply S0s viewed face-on. 3) At fixed $sigma_0$, more luminous S0s and E-FRs are younger, more metal rich and less $alpha$-enhanced. Evidently for these galaxies, the usual statement that massive galaxies are older is not true if $sigma_0$ is held fixed.
A recent paper by Ge et al. performs a series of experiments with two full spectral fitting codes, pPXF and starlight, finding that the two yield consistent results when the input spectrum is not heavily reddened. For E(B-V) > 0.2, however, they clai m starlight leads to severe biases in the derived properties. Counterintuitively, and at odds with previous simulations, they find that this behaviour worsens significantly as the signal-to-noise ratio of the input spectrum increases. This communication shows that this is entirely due to an A_V < 1 mag condition imposed while initializing the Markov chains in the code. This choice is normally irrelevant in real-life galaxy work but can become critical in artificial experiments. Alleviating this usually harmless initialization constraint changes the Ge et al. results completely, as was explained to the authors before their publication. We replicate their spectral fitting experiments, finding much smaller biases. Furthermore both bias and scatter in the derived properties all converge as S/N increases, as one would expect. We also show how the very output of the code provides ways of diagnosing anomalies in the fits. The code behaviour has been documented in careful and extensive experiments in the literature, but the biased analysis of Ge et al. is just not representative of starlight at all.
Bars in galaxies are thought to stimulate both inflow of material and radial mixing along them. Observational evidence for this mixing has been inconclusive so far however, limiting the evaluation of the impact of bars on galaxy evolution. We now use results from the MaNGA integral field spectroscopic survey to characterise radial stellar age and metallicity gradients along the bar and outside the bar in 128 strongly barred galaxies. We find that age and metallicity gradients are flatter in the barred regions of almost all barred galaxies when compared to corresponding disk regions at the same radii. Our results re-emphasize the key fact that by azimuthally averaging integral field spectroscopic data one loses important information from non-axisymmetric galaxy components such as bars and spiral arms. We interpret our results as observational evidence that bars are radially mixing material in galaxies of all stellar masses, and for all bar morphologies and evolutionary stages.
The late assembly of massive galaxies is thought to be dominated by stellar accretion in their outskirts (beyond 2 effective radii Re) due to dry, minor galaxy mergers. We use observations of 1010 passive early-type galaxies (ETGs) within z<0.15 from SDSS IV MaNGA to search for evidence of this accretion. The outputs from the stellar population fitting codes FIREFLY, pPXF, and Prospector are compared to control for systematic errors in stellar metallicity (Z) estimation. We find that the average radial logZ/Zsun profiles of ETGs in various stellar mass (M) bins are not linear. As a result, these profiles are poorly characterized by a single gradient value, explaining why weak trends reported in previous work can be difficult to interpret. Instead, we examine the full radial extent of stellar metallicity profiles and find them to flatten in the outskirts of M>10^{11}Msun ETGs. This is a signature of stellar accretion. Based on a toy model for stellar metallicity profiles, we infer the ex-situ stellar mass fraction in ETGs as a function of M and galactocentric radius. We find that ex-situ stars at 2Re make up 20% of the projected stellar mass of M<10^{10.5}Msun ETGs, rising up to 80% for M>10^{11.5}Msun ETGs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا