ترغب بنشر مسار تعليمي؟ اضغط هنا

Approximation Algorithms for Computing Maximin Share Allocations

144   0   0.0 ( 0 )
 نشر من قبل Georgios Amanatidis
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the problem of computing maximin share guarantees, a recently introduced fairness notion. Given a set of $n$ agents and a set of goods, the maximin share of a single agent is the best that she can guarantee to herself, if she would be allowed to partition the goods in any way she prefers, into $n$ bundles, and then receive her least desirable bundle. The objective then in our problem is to find a partition, so that each agent is guaranteed her maximin share. In settings with indivisible goods, such allocations are not guaranteed to exist, so we resort to approximation algorithms. Our main result is a $2/3$-approximation, that runs in polynomial time for any number of agents. This improves upon the algorithm of Procaccia and Wang, which also produces a $2/3$-approximation but runs in polynomial time only for a constant number of agents. To achieve this, we redesign certain parts of their algorithm. Furthermore, motivated by the apparent difficulty, both theoretically and experimentally, in finding lower bounds on the existence of approximate solutions, we undertake a probabilistic analysis. We prove that in randomly generated instances, with high probability there exists a maximin share allocation. This can be seen as a justification of the experimental evidence reported in relevant works. Finally, we provide further positive results for two special cases that arise from previous works. The first one is the intriguing case of $3$ agents, for which it is already known that exact maximin share allocations do not always exist (contrary to the case of $2$ agents). We provide a $7/8$-approximation algorithm, improving the previously known result of $3/4$. The second case is when all item values belong to ${0, 1, 2}$, extending the ${0, 1}$ setting studied in Bouveret and Lema^itre. We obtain an exact algorithm for any number of agents in this case.



قيم البحث

اقرأ أيضاً

We study the recently introduced cake-cutting setting in which the cake is represented by an undirected graph. This generalizes the canonical interval cake and allows for modeling the division of road networks. We show that when the graph is a forest , an allocation satisfying the well-known criterion of maximin share fairness always exists. Our result holds even when separation constraints are imposed, in which case no multiplicative approximation of proportionality can be guaranteed. Furthermore, while maximin share fairness is not always achievable for general graphs, we prove that ordinal relaxations can be attained.
We consider the problem of fair allocation of indivisible goods to $n$ agents, with no transfers. When agents have equal entitlements, the well established notion of the maximin share (MMS) serves as an attractive fairness criterion, where to qualify as fair, an allocation needs to give every agent at least a substantial fraction of her MMS. In this paper we consider the case of arbitrary (unequal) entitlements. We explain shortcomings in previous attempts that extend the MMS to unequal entitlements. Our conceptual contribution is the introduction of a new notion of a share, the AnyPrice share (APS), that is appropriate for settings with arbitrary entitlements. Even for the equal entitlements case, this notion is new, and satisfies $APS ge MMS$, where the inequality is sometimes strict. We present two equivalent definitions for the APS (one as a minimization problem, the other as a maximization problem), and provide comparisons between the APS and previous notions of fairness. Our main result concerns additive valuations and arbitrary entitlements, for which we provide a polynomial-time algorithm that gives every agent at least a $frac{3}{5}$-fraction of her APS. This algorithm can also be viewed as providing strategies in a certain natural bidding game, and these strategies secure each agent at least a $frac{3}{5}$-fraction of her APS.
We consider the problem of fair allocation of indivisible items among $n$ agents with additive valuations, when agents have equal entitlements to the goods, and there are no transfers. Best-of-Both-Worlds (BoBW) fairness mechanisms aim to give all ag ents both an ex-ante guarantee (such as getting the proportional share in expectation) and an ex-post guarantee. Prior BoBW results have focused on ex-post guarantees that are based on the up to one item paradigm, such as envy-free up to one item (EF1). In this work we attempt to give every agent a high value ex-post, and specifically, a constant fraction of his maximin share (MMS). The up to one item paradigm fails to give such a guarantee, and it is not difficult to present examples in which previous BoBW mechanisms give agents only a $frac{1}{n}$ fraction of their MMS. Our main result is a deterministic polynomial time algorithm that computes a distribution over allocations that is ex-ante proportional, and ex-post, every allocation gives every agent at least his proportional share up to one item, and more importantly, at least half of his MMS. Moreover, this last ex-post guarantee holds even with respect to a more demanding notion of a share, introduced in this paper, that we refer to as the truncated proportional share (TPS). Our guarantees are nearly best possible, in the sense that one cannot guarantee agents more than their proportional share ex-ante, and one cannot guarantee agents more than a $frac{n}{2n-1}$ fraction of their TPS ex-post.
108 - Haris Aziz , Bo Li , Xiaowei Wu 2020
We initiate the work on maximin share (MMS) fair allocation of m indivisible chores to n agents using only their ordinal preferences, from both algorithmic and mechanism design perspectives. The previous best-known approximation is 2-1/n by Aziz et a l. [IJCAI 2017]. We improve this result by giving a simple deterministic 5/3-approximation algorithm that determines an allocation sequence of agents, according to which items are allocated one by one. By a tighter analysis, we show that for n=2,3, our algorithm achieves better approximation ratios, and is actually optimal. We also consider the setting with strategic agents, where agents may misreport their preferences to manipulate the outcome. We first provide a O(log (m/n))-approximation consecutive picking algorithm, and then improve the approximation ratio to O(sqrt{log n}) by a randomized algorithm. Our results uncover some interesting contrasts between the approximation ratios achieved for chores versus goods.
142 - Bo Li , Yingkai Li , Xiaowei Wu 2021
In this paper, we consider how to fairly allocate $m$ indivisible chores to a set of $n$ (asymmetric) agents. As exact fairness cannot be guaranteed, motivated by the extensive study of EF1, EFX and PROP1 allocations, we propose and study {em proport ionality up to any item} (PROPX), and show that a PROPX allocation always exists. We argue that PROPX might be a more reliable relaxation for proportionality in practice than the commonly studied maximin share fairness (MMS) by the facts that (1) MMS allocations may not exist even with three agents, but PROPX allocations always exist even for the weighted case when agents have unequal obligation shares; (2) any PROPX allocation ensures 2-approximation for MMS, but an MMS allocation can be as bad as $Theta(n)$-approximation to PROPX. We propose two algorithms to compute PROPX allocations and each of them has its own merits. Our first algorithm is based on a recent refinement for the well-known procedure -- envy-cycle elimination, where the returned allocation is simultaneously PROPX and $4/3$-approximate MMS. A by-product result is that an exact EFX allocation for indivisible chores exists if all agents have the same ordinal preference over the chores, which might be of independent interest. The second algorithm is called bid-and-take, which applies to the weighted case. Furthermore, we study the price of fairness for (weighted) PROPX allocations, and show that the algorithm computes allocations with the optimal guarantee on the approximation ratio to the optimal social welfare without fairness constraints.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا