ﻻ يوجد ملخص باللغة العربية
We report the magnetic properties of two Eu based compounds, single crystalline EuIrGe$_3$ and EuRhGe$_3$, inferred from magnetisation, electrical transport, heat capacity and $^{151}$Eu M{o}ssbauer spectroscopy. These previously known compounds crystallise in the non-centrosymmetric, tetragonal, $I4mm$, BaNiSn$_3$-type structure. Single crystals of EuIrGe$_3$ and EuRhGe$_3$ were grown using high temperature solution growth method using In as flux. EuIrGe$_3$ exhibits two magnetic orderings at $T_{rm N1}$ = 12.4 K, and $T_{rm N2}$ = 7.3 K. On the other hand EuRhGe$_3$ presents a single magnetic transition with a $T_{rm N}$ = 12 K. $^{151}$Eu M{o}ssbauer spectra present evidence for a cascade of transitions from paramagnetic to incommensurate amplitude modulated followed by an equal moment antiferromagnetic phase at lower temperatures in EuIrGe$_3$, the transitions having a substantial first order character. On the other hand the $^{151}$Eu M{o}ssbauer spectra at 4.2 and 9 K in EuRhGe$_3$ present evidence of a single magnetic transition. In both compounds a superzone gap is observed for the current density $Jparallel$ [001], which enhances with transverse magnetic field. The magnetisation measured up to 14 T shows the occurrence of field induced transitions, which are well documented in the magnetotransport data as well. The magnetic phase diagram constructed from these data is complex, revealing the presence of many phases in the $H-T$ phase space.
We have synthesized single crystals of CeZnAl$_3$, which is a new member of the family of the Ce-based intermetallics Ce$TX_3$ ($T$ = transition metal, $X$= Si, Ge, Al), crystallizing in the non-centrosymmetric tetragonal BaNiSn$_3$-type structure. M
Magnetization and specific heat measurements on a UIrSi3 single crystal reveal Ising-like antiferromagnetism below T$_N$ = 41.7 K with easy magnetization direction along the c-axis of tetragonal structure. The antiferromagentic ordering is suppressed
We present an investigation of the magnetic field-temperature phase diagram of Cu$_2$OSeO$_3$ based on DC magnetisation and AC susceptibility measurements covering a broad frequency range of four orders of magnitude, from very low frequencies reachin
What is so unique in TlCuCl3 which drives so many unique magnetic features in this compound? To study these properties, here we employ a combination of ab-initio band structure, tight-binding model, and an effective quantum field theory. Within a den
High-quality single crystals of CoTiO$_3$ are grown and used to elucidate in detail structural and magnetostructural effects by means of high-resolution capacitance dilatometry studies in fields up to 15 T which are complemented by specific heat and