ﻻ يوجد ملخص باللغة العربية
Some years ago, a method was proposed for measuring the CP-violating phase gamma using pairs of two-body decays that are related by U-spin reflection (d <-> s). In this paper we adapt this method to charmless B -> PPP decays. Time-dependent Dalitz-plot analyses of these three-body decays are required for the measurement of the mixing-induced CP asymmetries. However, isobar analyses of the decay amplitudes are not necessary. A potential advantage of using three-body decays is that the effects of U-spin breaking may be reduced by averaging over the Dalitz plot. This can be tested independently using the measurements of direct CP asymmetries and branching ratios in three-body charged B decays.
U-spin symmetry predicts equal CP rate asymmetries with opposite signs in pairs of $Delta S=0$ and $Delta S=1$ $B$ meson decays in which initial and final states are related by U-spin reflection. Of particular interest are six decay modes to final st
We give a summary of the discussions in Working Group V of the CKM2010 workshop dealing with determinations of the angle gamma of the unitarity triangle of the Cabibbo-Kobayashi-Maskawa matrix from B-meson decays into charmed final states.
To date, the weak-phase $gamma$ has been measured using two-body $B$-meson decays such as $Bto D K$ and $Bto Dpi$, whose amplitudes contain only tree-level diagrams. But $gamma$ can also be extracted from three-body charmless hadronic $B$ decays. Sin
We demonstrate that dispersion theory allows one to deduce crucial information on $pieta$ scattering from the final-state interactions of the light mesons visible in the spectral distributions of the decays $bar{B}^0_d to J/psi(pi^0eta,K^+K^-,K^0bar{
It has been pointed out by Gronau and Rosner that the angle gamma of the unitarity triangle could be determined by combining future results on B_s and B_d decays to K pi. Here we show that it is important to include in the analysis the information on