ترغب بنشر مسار تعليمي؟ اضغط هنا

Surreal numbers, derivations and transseries

85   0   0.0 ( 0 )
 نشر من قبل Vincenzo Mantova
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Several authors have conjectured that Conways field of surreal numbers, equipped with the exponential function of Kruskal and Gonshor, can be described as a field of transseries and admits a compatible differential structure of Hardy-type. In this paper we give a complete positive solution to both problems. We also show that with this new differential structure, the surreal numbers are Liouville closed, namely the derivation is surjective.



قيم البحث

اقرأ أيضاً

The present article surveys surreal numbers with an informal approach, from their very first definition to their structure of universal real closed analytic and exponential field. Then we proceed to give an overview of the recent achievements on equi pping them with a derivation, which is done by proving that surreal numbers can be seen as transseries and by finding the `simplest structure of H-field, the abstract version of a Hardy field. All the latter notions and their context are also addressed, as well as the universality of the resulting structure for surreal numbers.
We show that Ecalles transseries and their variants (LE and EL-series) can be interpreted as functions from positive infinite surreal numbers to surreal numbers. The same holds for a much larger class of formal series, here called omega-series. Omega -series are the smallest subfield of the surreal numbers containing the reals, the ordinal omega, and closed under the exp and log functions and all possible infinite sums. They form a proper class, can be composed and differentiated, and are surreal analytic. The surreal numbers themselves can be interpreted as a large field of transseries containing the omega-series, but, unlike omega-series, they lack a composition operator compatible with the derivation introduced by the authors in an earlier paper.
173 - David Pierce 2013
For every natural number $m$, the existentially closed models of the theory of fields with $m$ commuting derivations can be given a first-order geometric characterization in several ways. In particular, the theory of these differential fields has a m odel-companion. The axioms are that certain differential varieties determined by certain ordinary varieties are nonempty. There is no restriction on the characteristic of the underlying field.
181 - David Pierce 2011
This paper grew out of the observation that the possibilities of proof by induction and definition by recursion are often confused. The paper reviews the distinctions. The von Neumann construction of the ordinal numbers includes a construction of nat ural numbers as a special kind of ordinal. In any case, the natural numbers can be understood as composing a free algebra in a certain signature, {0,s}. The paper here culminates in a construction of, for each algebraic signature S, a class ON_S that is to the class of ordinals as S is to {0,s}. In particular, ON_S has a subclass that is a free algebra in the signature S.
We study the topological version of the partition calculus in the setting of countable ordinals. Let $alpha$ and $beta$ be ordinals and let $k$ be a positive integer. We write $betato_{top}(alpha,k)^2$ to mean that, for every red-blue coloring of the collection of 2-sized subsets of $beta$, there is either a red-homogeneous set homeomorphic to $alpha$ or a blue-homogeneous set of size $k$. The least such $beta$ is the topological Ramsey number $R^{top}(alpha,k)$. We prove a topological version of the ErdH{o}s-Milner theorem, namely that $R^{top}(alpha,k)$ is countable whenever $alpha$ is countable. More precisely, we prove that $R^{top}(omega^{omega^beta},k+1)leqomega^{omega^{betacdot k}}$ for all countable ordinals $beta$ and finite $k$. Our proof is modeled on a new easy proof of a weak version of the ErdH{o}s-Milner theorem that may be of independent interest. We also provide more careful upper bounds for certain small values of $alpha$, proving among other results that $R^{top}(omega+1,k+1)=omega^k+1$, $R^{top}(alpha,k)< omega^omega$ whenever $alpha<omega^2$, $R^{top}(omega^2,k)leqomega^omega$ and $R^{top}(omega^2+1,k+2)leqomega^{omegacdot k}+1$ for all finite $k$. Our computations use a variety of techniques, including a topological pigeonhole principle for ordinals, considerations of a tree ordering based on the Cantor normal form of ordinals, and some ultrafilter arguments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا