ترغب بنشر مسار تعليمي؟ اضغط هنا

Short-period X-ray oscillations in super-soft novae and persistent SSS

158   0   0.0 ( 0 )
 نشر من قبل Jan-Uwe Ness
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Transient short-period <100s oscillations have been found in the X-ray light curves of three novae during their SSS phase and in one persistent SSS. We pursue an observational approach to determine possible driving mechanisms and relations to fundamental system parameters such as the white dwarf mass. We performed a systematic search for short-period oscillations in all available XMM-Newton and Chandra X-ray light curves of persistent SSS and novae during their SSS phase. To study time evolution, we divided each light curve into short time segments and computed power spectra. We then constructed dynamic power spectra from which we identified transient periodic signals even when only present for a short time. From all time segments of each system, we computed fractions of time when periodic signals were detected. In addition to the previously known systems with short-period oscillations, RS Oph (35s), KT Eri (35s), V339 Del (54s), and Cal 83 (67s), we found one additional system, LMC 2009a (33s), and also confirm the 35s period from Chandra data of KT Eri. The amplitudes of oscillations are of order <15% of the respective count rates and vary without any clear dependence on the X-ray count rate. The fractions of the time when the respective periods were detected at 2-sigma significance (duty cycle) are 11.3%, 38.8%, 16.9%, 49.2%, and 18.7% for LMC 2009a, RS Oph, KT Eri, V339 Del, and Cal 83, respectively. The respective highest duty cycles found in a single observation are 38.1%, 74.5%, 61.4%, 67.8%, and 61.8%.



قيم البحث

اقرأ أيضاً

Super-Soft-Source (SSS) X-ray spectra are blackbody-like spectra with effective temperatures ~3-7x10^5 K and luminosities of 10^{35-38} erg/s. SSS grating spectra display atmospheric absorption lines. Radiation transport atmosphere models can be used to derive physical parameters, but more sophisticated models are required. We bypass the complications of spectral models and concentrate on the data in a comparative, qualitative study. We inspect all available X-ray grating SSS spectra to determine systematic, model-independent trends. We use comparative plots of spectra of different systems to find common and different features. The results are interpreted in the context of system parameters obtained from the literature. We find two distinct types of SSS spectra which we name SSa and SSe. Their main observational characteristics are either clearly visible absorption lines or emission lines, respectively, while both types contain atmospheric continuum emission. SSe may be obscured SSa systems, which is supported by similarities between SSe and SSa with obscured and unobscured AGN, respectively. Further, we find all known or suspected high-inclination systems to emit permanently in an SSe state. Some sources are found to transition between SSa and SSe states, becoming SSe when fainter. SSS spectra are subject to various occultation processes. In Cal 87, the accretion disc blocks the central hot source when viewed edge on. In novae, the accretion disc may have been destroyed during the initial explosion but could have reformed by the time of the SSS phase. In addition, clumpy ejecta may lead to temporary obscuration events. The emission lines originate from reprocessed emission in the accretion disc, its wind or further out in clumpy ejecta while Thomson scattering allows continuum emission to be visible also during total obscuration of the central hot source.
149 - Marina Orio 2012
X-ray grating spectra have opened a new window on the nova physics. High signal-to-noise spectra have been obtained for 12 novae after the outburst in the last 13 years with the Chandra and XMM-Newton gratings. They offer the only way to probe the temperature, effective gravity and chemical composition of the hydrogen burning white dwarf before it turns off. These spectra also allow an analysis of the ejecta, which can be photoionized by the hot white dwarf, but more often seem to undergo collisional ionization. The long observations required for the gratings have revealed semi-regular and irregular variability in X-ray flux and spectra. Large short term variability is especially evident in the first weeks after the ejecta have become transparent to the central supersoft X-ray source. Thanks to Chandra and XMM-Newton, we have discovered violent phenomena in the ejecta, discrete shell ejection, and clumpy emission regions. As expected, we have also unveiled the white dwarf characteristics. The peak white dwarf effective temperature in the targets of our samples varies between ~400,000 K and over a million K, with most cases closer to the upper end, although for two novae only upper limits around 200,000 K were obtained. A combination of results from different X-ray satellites and instruments, including Swift and ROSAT, shows that the shorter is the supersoft X-ray phase, the lower is the white dwarf peak effective temperature, consistently with theoretical predictions. The peak temperature is also inversely correlated with t(2) the time for a decay by 2 mag in optical. I strongly advocate the use of white dwarf atmospheric models to obtain a coherent physical picture of the hydrogen burning process and of the surrounding ejecta.
189 - M. Hernanz , G. Sala (2 2009
Detection of X-rays from classical novae, both in outburst and post-outburst, provides unique and crucial information about the explosion mechanism. Soft X-rays reveal the hot white dwarf photosphere, whenever hydrogen (H) nuclear burning is still on and expanding envelope is transparent enough, whereas harder X-rays give information about the ejecta and/or the accretion flow in the reborn cataclysmic variable. The duration of the supersoft X-ray emission phase is related to the turn-off of the classical nova, i.e., of the H-burning on top of the white dwarf core. A review of X-ray observations is presented, with a special emphasis on the implications for the duration of post-outburst steady H-burning and its theoretical explanation. The particular case of recurrent novae (both the standard objects and the recently discovered ones) is also reviewed, in terms of theoretical feasibility of short recurrence periods, as well as regarding implications for scenarios of type Ia supernovae.
We present X-ray observations of novae V2491 Cyg and KT Eri about 9 years post-outburst, of the dwarf nova and post-nova candidate EY Cyg, and of a VY Scl variable. The first three objects were observed with XMM-Newton, KT Eri also with the Chandra A CIS-S camera, V794 Aql with the Chandra ACIS-S camera and High Energy Transmission Gratings. The two recent novae, similar in outburst amplitude and light curve, appear very different at quiescence. Assuming half of the gravitational energy is irradiated in X-rays, V2491 Cyg is accreting at $dot{m}=1.4times10^{-9}-10^{-8}M_odot/yr$, while for KT Eri, $dot{m}<2times10^{-10}M_odot/yr$. V2491 Cyg shows signatures of a magnetized WD, specifically of an intermediate polar. A periodicity of ~39 minutes, detected in outburst, was still measured and is likely due to WD rotation. EY Cyg is accreting at $dot{m}sim1.8times10^{-11}M_odot/yr$, one magnitude lower than KT Eri, consistently with its U Gem outburst behavior and its quiescent UV flux. The X-rays are modulated with the orbital period, despite the systems low inclination, probably due to the X-ray flux of the secondary. A period of ~81 minutes is also detected, suggesting that it may also be an intermediate polar. V794 Aql had low X-ray luminosity during an optically high state, about the same level as in a recent optically low state. Thus, we find no clear correlation between optical and X-ray luminosity: the accretion rate seems unstable and variable. The very hard X-ray spectrum indicates a massive WD.
We study populations of soft and super-soft X-ray sources in nearby galaxies of various morphological types with the special emphasis on characterizing populations of stable nuclear burning accreting WDs. Analysing the content of Chandra archive we a ssembled a sample of nearby galaxies suitable for studying populations of super-soft X-ray sources. Our sample includes 4 spiral galaxies, 2 lenticular galaxies and 3 ellipticals with stellar mass exceeding $10^{10}$ $M_odot$ and X-ray sensitivity of the order of a ${rm few}times 10^{36}$ erg/s. We used combination of hardness ratio and median energy to pre-select X-ray sources with soft spectra, and temperature - X-ray luminosity diagram to identify super-soft X-ray sources - likely nuclear burning accreting white dwarfs. For spiral galaxies, there is a distinct and rare population of super-soft sources, largely detached from the rest of sources on the $kT_{bb}-L_X$ plane. The boundary between these sources and the much more numerous population of harder (but still soft) sources is consistent with the boundary of stable hydrogen burning on the white dwarf surface. Combined spectrum of soft sources located outside this boundary, shows clear emission lines of Mg and S, which equivalent width is similar to that in the combined spectrum of a large number of confirmed supernova remnants in M83. This confirms earlier suggestions that the vast majority of so called quasi-soft sources are supernova remnants. In early-type galaxies, populations of super-soft sources are about a factor of $approx 8$ less abundant, in broad agreement with the population synthesis calculations. Specific frequencies of super-soft sources are: (2.08$pm$0.46)$times10^{-10}$ M$_{odot}^{-1}$ in spiral galaxies and (2.47$pm$1.34)$times10^{-11}$ M$_{odot}^{-1}$ in lenticular and elliptical galaxies, with the ratio of the latter to the former of $0.12pm0.05$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا